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Background
Redox-Flow Batteries (RFBs)
 Reversible fuel cells
 Decoupled power delivery and energy storage
 Excellent scalability and durability
 Low cost compared with other batteries in large scale
 Easy management of both electrolytes and cells

Cerium Redox Pair-Based RFBs 
 Very high redox potential (1.74~1.87 V vs. SHE)
 Very high cell voltage (e.g., Pb-Ce RFB with 1.87 V; V-Ce 

RFB with 2.00 V; Zn (acid)-Ce RFB with 2.50 V; and Zn 
(base)-Ce RFB with 3.08 V)

 Very facile redox kinetics (~10 mV overpotential at 100 
mA/cm2 on carbon felt electrodes)

 Good solubility (e.g., 1 mol/L)
 Potentially high energy density and high power density
 Low RFB cost

Key Challenge Facing Cerium-Based RFBs 
 Sufficient stability and durability of polymer anion-exchange 

membranes against highly-oxidative cerium(IV) ions (e.g., 
Ce4+ in sulfuric acid or Ce2O6+ in perchloric acid)

Two Generations of Phosphonium Cations (Gen 1 and Gen 2) Synthetic Strategy

Objective & Impact

Objective
Preparation of a series of highly stable AEMs functionalized with 
the new-generation phosphonium cation (9MeTTP+), tailored for 
the applications of cerium RFBs and many other alkaline 
membrane-based durable electrochemical devices such as fuel 
cells and electrolyzers.

Impact
The development of stable anion-exchange membranes will help 
make high-voltage RFBs an economically competitive and efficient 
solution of renewable energy storage.
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Fig 2. Structures of the Gen 1 phosphonium cation (i.e., tris(2,4,6-trimethoxyphenyl) phosphonium, or 9MeOTTP+, left 
column) and the Gen 2 phosphonium cation (i.e., tris(2,4,6-trimethylphenyl) phosphonium, or 9MeTTP+, right column). 
Chemical structures are on top and spatial structures are on bottom for both Gen 1 cation and Gen 2 cation. The key 
difference between Gen 1 and Gen 2 lies in the accessibility to central phosphorus atom (purple ball).Fig 1. General schematic of redox-flow batteries

Outstanding Stability (30-Fold Improved)  

Fig 3. Alkaline stability comparison among the
standard trimethyl ammonium cation and the two
generations of phosphonium cations. Test conditions
and procedure: A 1 M alkaline solution was prepared
by dissolving KOD in a 5:1 (vol) mixture of
CD3OD/D2O. (Note: the purpose of the methanol is to
accelerate degradation.) Cation salts were added to
the alkaline solution to obtain a molar ratio of 30 KOD
: 1 cation (i.e., 0.033 M). A similar quantity of 3-
(trimethylsilyl)-1-propanesulfonic acid sodium salt
(TMS(CH2)3SO3Na) was also added to serve as an
internal standard. The mixture was held at 80 °C for
certain days. 31P NMR spectroscopy was used to
determine the degree of degradation for all
phosphonium cations, and 1H NMR spectroscopy for
ammonium cation.

Our Approach
 Design of new-generation of phosphonium cation (i.e., tris(2,4,6-trimethylphenyl) phosphonium, or 9MeTTP+)
 Development of new phosphonium cation-functionalized anion-exchange membranes with improved stability

Gen 1 (9MeOs) Gen 2 (9Mes)
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Fig 4. Proposed synthetic strategy for attaching 9MeTTP+ cation 
to polymer backbone. (polysulfone as an example of polymer 
backbone, and iodoalkylene carbonyl chloride with carbon 
number = 4 as an example of linkage molecule).
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