New-Generation P⁺ Cation for High-Voltage Redox-Flow Batteries Yushan Yan (PI)^a, Shuang Gu (Co-PI)^a, Bingjun Xu (Co-PI)^a, and Bryan Pivovar (Co-PI)^b ^a Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716. FC131 ^b National Renewable Energy Laboratory (NREL), Golden, CO 80401. This poster does not contain any proprietary, confidential, or otherwise restricted information.

Background

Redox-Flow Batteries (RFBs)

- ✓ Reversible fuel cells
- Decoupled power delivery and energy storage
- ✓ Excellent scalability and durability
- ✓ Low cost compared with other batteries in large scale
- Easy management of both electrolytes and cells

Fig 1. General schematic of redox-flow batteries

Cerium-Based High-Voltage RFBs

Cerium Redox Pair-Based RFBs

- ✓ Very high redox potential (1.74~1.87 V vs. SHE)
- ✓ Very high cell voltage (*e.g.*, Pb-Ce RFB with **1.87 V**; V-Ce RFB with **2.00 V**; Zn (acid)-Ce RFB with **2.50 V**; and Zn (base)-Ce RFB with **3.08 V**)
- ✓ Very facile redox kinetics (~10 mV overpotential at 100 mA/cm² on carbon felt electrodes)
- \checkmark Good solubility (e.g., 1 mol/L)
- Potentially high energy density and high power density
- ✓ Low RFB cost

Key Challenge Facing Cerium-Based RFBs

✓ Sufficient stability and durability of polymer anion-exchange membranes against highly-oxidative cerium(IV) ions (e.g., Ce^{4+} in sulfuric acid or Ce_2O^{6+} in perchloric acid)

UNIVERSITY of DELAWARE

Gen 2 (9Mes)

Fig 3. Alkaline stability comparison among the standard trimethyl ammonium cation and the two generations of phosphonium cations. Test conditions and procedure: A 1 M alkaline solution was prepared by dissolving KOD in a 5:1 (vol) mixture of CD_3OD/D_2O . (Note: the purpose of the methanol is to accelerate degradation.) Cation salts were added to the alkaline solution to obtain a molar ratio of 30 KOD : 1 cation (*i.e.*, 0.033 M). A similar quantity of 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt $(TMS(CH_2)_3SO_3Na)$ was also added to serve as an internal standard. The mixture was held at 80 °C for certain days. ³¹P NMR spectroscopy was used to determine the degree of degradation for all phosphonium cations, and ¹H NMR spectroscopy for ammonium cation.

Fig 4. Proposed synthetic strategy for attaching **9MeTTP**⁺ cation to polymer backbone. (polysulfone as an example of polymer backbone, and iodoalkylene carbonyl chloride with carbon number = 4 as an example of linkage molecule).

Objective & Impact

Objective

Preparation of a series of highly stable AEMs functionalized with the new-generation phosphonium cation (**9MeTTP**⁺), tailored for the applications of cerium RFBs and many other alkaline membrane-based durable electrochemical devices such as fuel cells and electrolyzers.

Impact

The development of stable anion-exchange membranes will help make high-voltage RFBs an economically competitive and efficient solution of renewable energy storage.

Acknowledgement

We appreciate the financial support from the EERE of DOE through the Fuel Cell Technologies Incubator Program.

Energy Efficiency &

Renewable Energy

Synthetic Strategy

