

# U.S. DEPARTMENT OF



# Manufacturing R&D Program Area - Plenary Presentation -

Nancy L. Garland Fuel Cell Technologies Office

2015 Annual Merit Review and Peer Evaluation Meeting June 8 - 12, 2015

U.S. DEPARTMENT OF ENERGY Fuel Cell Technologies Office | 2

**Goal:** Reduce the cost of manufacturing hydrogen production, delivery, storage, and fuel cell systems

### **Objectives**

- Reduce the cost of manufacturing components and systems that produce and deliver hydrogen at <\$4/gge (2007 dollars) (untaxed, delivered, and dispensed) by 2020.
- Develop processes to fabricate compressed hydrogen pressure vessels leading to a total onboard storage system cost of \$10/kWh by 2020, with an ultimate target of \$8/kWh.
- Develop manufacturing techniques to reduce the cost of automotive fuel cell stacks at high volume (500,000 units/year) from the 2008 value of \$38/kW to \$20/kW by 2020.
- Analyze and identify areas where the United States might have specific, viable manufacturing opportunities.
- Other specific objectives are in the FCTO MYRD&D Plan.



QC Diagnostics at NREL



**Defect in Membrane Electrode Assembly** 

## **Manufacturing Challenges & Strategy**



#### **Barriers**

- Lack of High-Volume Membrane Electrode Assembly (MEA) Manufacturing Processes
- Low Levels of Quality Control (QC)
- Lack of Standardized Balance-of-Plant Components
- High-cost Carbon Fiber for Hydrogen Storage Tanks
- Lack of Reliable Hydrogen Compressors

#### **Strategy**

- Identify cost drivers of manufacturing processes
- Modify processes to eliminate process steps
- Increase automation
- Improve yields and reduce scrap
- Scale-up laboratory fabrication methods to low-cost, high-volume production

### **R&D Focus**

- In-line defect diagnostics for QC of MEAs and MEA components
- Global manufacturing competitiveness of hydrogen and fuel cell technologies
- Expand domestic supply chain for manufacturing hydrogen and fuel cell systems

### Key Areas Hydrogen Delivery

## Develop

innovative, lowcost processes for manufacturing fiber-reinforced composite pipe (FRP)

### **MEAs**

- Develop diagnostics for inline QC of MEAs and components
- Quantify the effect of defects on performance and durability

# **FCEV Cost Reduction Pathways**

U.S. DEPARTMENT OF

**Manufacturing R&D** 

Assumptions

## **Opportunities for cost reduction**



Manufacturing R&D and volume are key to achieve cost reduction

## **Budget: Manufacturing R&D**

### **FY 2016 Request = \$4M**

FY 2015 Appropriation = \$3M



## **EMPHASIS**

- Quality control critical to enabling low-cost manufacturing with reduced waste; correlate defect morphology with loss in performance (NREL, LBNL)
- New analysis projects: global manufacturing competitiveness with CEMI and enhancing the supply chain (GLWN, OFCC, JMU)
- 2015 FOA topic: fiber reinforced pipeline manufacturing
- Future focus could include improved manufacturing processes to reduce cost and increase reliability & efficiency of:
  - Compressors
  - Hoses
  - Seals
  - Station storage
- Leveraging efforts across EERE where cross-cutting manufacturing challenges exist

# Technical Accomplishments: QC





Demonstrated IR/RIF on NREL research web-line

# Technical Accomplishments: QC



# Impinging flow model from LBNL:

- Predicts operating conditions required for defect detection
- Predicts achievable thermal response given defect size, i.e., detection limits
- **o** Good quantitative agreement with experiment





| Defect            | Minimum<br>detectable<br>defect at<br>ΔT <sub>d</sub> =1°C | Minimum<br>detectable<br>defect at<br>ΔT <sub>d</sub> =2°C |
|-------------------|------------------------------------------------------------|------------------------------------------------------------|
| 100%<br>reduction | 0.24 mm                                                    | 0.5 mm                                                     |
| 50%<br>reduction  | 0.51 mm                                                    | 1.05 mm                                                    |
| 25%<br>reduction  | 1.07 mm                                                    | 2.3 mm                                                     |

### Enhanced impinging flow model with web motion for RIF

# Technical Accomplishments: QC

- In-plane IR/DC
  - Detected carbon debris
    applied to GDE, under a
    laminated membrane
  - 10 fpm on bench-top roller



- Detected electrode coating lumps on decal
- 10 fpm on research webline



Applied IR/DC techniques on GM and Ion Power electrodes



## Topic 1

# Facilitate the Development and Expansion of a Robust Supply Chain for Hydrogen and Fuel Cell Systems and Components

## FOA Requirements and Project Deliverables

The outcome and deliverables from this topic area must address both:

- (1) Outreach activities that facilitate the development of a robust domestic hydrogen and fuel cell supply chain
- (2) Reports that identify supply chain gaps and strategies to overcome these gaps and reduce supply chain costs

U.S. DEPARTMENT OF

# Topic 1 Facilitate the Development and Expansion of a Robust Supply Chain for Hydrogen and Fuel Cell Systems and Components

The Ohio Fuel Cell Coalition

Integrated Regional Technical Exchange Centers

Objective: Develop a national technical exchange network that will expand the hydrogen and fuel cell supply chain and promote the standardization of components to lower the system costs

### Virginia Clean Cities James Madison University

Fuel Cell Hydrogen Opportunity Center

Objective: Expand the domestic supply chain of components and systems necessary for the manufacture and scale-up of the fuel cell and hydrogen supply chain.

## Integrated Regional Technical Exchange Centers Ohio Fuel Cell Coalition

### Proposed work:

- Create an integrated network of regional Technical Exchange Centers:
  - East Coast (CCAT)
  - Midwest (OFCC)
  - Central States (NREL's National Fuel Cell Technology Evaluation Center)
  - West Coast (UC Irvine)
- The Technical Exchange Centers will:
  - Collect and catalog non-proprietary product information from regional suppliers and OEMs
  - Maintain a supplier contact list to introduce OEMs to suppliers
  - Hold annual supply chain exchanges
- Working Groups will:

ALITION

- Comprise members from the OEMs and hydrogen and fuel cell suppliers
- Analyze the specific needs of the OEMs with the multiple suppliers
- Promote cooperation between suppliers and the **standardization** of component specs







**U.S. DEPARTMENT OF** 



## Fuel Cell Hydrogen Opportunity Center Virginia Clean Cities at James Madison University

#### U.S. DEPARTMENT OF ENERGY Fuel Cell Technologies Office | 12

## Workplan

- Build and populate comprehensive database on Internet
  - Encourage supplier engagement
  - Release and maintain a public directory
- Attract U.S. companies to website with outreach campaign using trade associations, webinars, social media, personal contacts





Source: http://www.birchstudio.com/data-vis.php



## Topic 2

## Analysis of U.S. Hydrogen and Fuel Cell Manufacturing Global Competitiveness (with NREL)

## **FOA Requirements and Project Deliverables**

The outcome and deliverables from this topic area must address both:

(1) Global Competitiveness Analysis of hydrogen and fuel cell technologies manufacturing

(2) Assessment of the state of global fuel cell markets

### Workplan:

- Identify the 5 high value components, generate generic drawings, and conduct detailed cost analysis (CBA, DFMA<sup>®</sup>, VSM) in 3 global regions
- The results will include: global cost leaders, best global manufacturing processes, key factors determining competitiveness, and opportunities for cost reduction.





#### Stack Cost Breakdown (500,000 Units/year)

# Membranes Catalyst + Application

- MEA Frames/Gaskets
- Balance of Stack

### **Cost Analysis Methodologies**

- Global Cost Breakdown Analysis (CBA, top)
- Design for Manufacturing & Assembly (DFMA<sup>®</sup>, left)
- Value Stream Mapping (VSM, bottom) ٠

#### USA 1 Tower - 17 Process Steps



Sources: (left) fuel cell stack cost breakdown; (right top and bottom) offshore wind turbine Tower Cost Breakdown Analysis and Value Stream Mapping of 5 MW Tower (Ref. MN-014 FCTO 2015 Annual Merit Review and Peer Evaluation)

# U.S. Clean Energy Hydrogen and Fuel Cell Technologies: A Competiveness Analysis GLWN – Westside Industrial Retention & Expansion Network

Outcomes:

(jIWN ≌

- o Identify areas where the **U.S.** might have **viable manufacturing oppo**rtunities or vulnerabilities
- o Identify potential "tipping points" where the U.S. could lose or gain leadership within segments of the supply chain
- o Identify **high value-added segments** of the supply chain that dictate other upstream/downstream products
- o Show which **segments** are particularly well-suited to **U.S. strengths** (e.g., requiring a highly skilled, innovative workforce)

# Analysis to assess the status of global fuel cell markets

 Report out of H&FC units, size (MW), country, and application





### **HTAC Manufacturing Subcommittee Report**

With NREL, the Subcommittee implemented a questionnaire and obtained industry feedback on manufacturing technologies in use and under consideration

### **Executive Summary**

- Significant progress has been made in commercialization of fuel cells and hydrogen production
- Adoption is at a "tipping point" and requires further cost reductions to be self-sustaining
- Suppliers and OEMs are reluctant to invest in areas that could reduce cost, due to uncertain demand
- Initiatives in a few key areas could have significant impact and move industry into the next phase of growth

### **Recommendations:**

- Targeted demand stimulation programs (such as Market Transformation), including deployments in/outside the U.S.
- 2) Selected key component cost reduction and standardization
- Greater access to additive & other advanced manufacturing techniques



## **Accomplishments: Manufacturing**



### U.S. Department of Energy Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Program FY2015 Phase I Release 2

### **TTO Topic Description:**

- NREL measured thickness/defects in membrane material used optical reflectance on a moving manufacturing web-line.
- The reflectance signal from the fuel cell material is captured by an array detector.
- DOE asked small businesses to design and develop quality control devices for fuel cell and fuel cell component manufacturers.

### **Defects in mesh-containing membrane**



**Selection:** Mainstream Engineering is developing a real-time, in-line optical detector to measure membrane thickness and detect defects. The detector will lower the costs of fuel cells by reducing waste and increasing the efficiency of manufacturing.



| Description                                                                                                                                                                                                                                                                               | Metric                                               | Due Date  | Status                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Expose Auto OEMs to NREL's manufacturing<br>QC techniques and discuss pathways for<br>qualification and tech transfer. NREL will<br>identify companies with highest impact<br>potential and interest in implementing QC<br>methods, then do a selective 'road show' to<br>demonstrate QC. | 3 Auto<br>OEMs/teams<br>visited                      | 9/30/2015 | Leveraging relationships with OEMs in existing<br>CRADAs. Continuing communications with a key<br>FC supplier and an OEM. Despite strong interest<br>both entities indicate that they do not have<br>research budget to collaborate with NREL.<br>Planned discussion with another OEM<br>during their visit to NREL in May. |
|                                                                                                                                                                                                                                                                                           | 2 new industrial<br>partnerships<br>developed        | 9/30/2015 | Existing OEM partnerships (2) ongoing.                                                                                                                                                                                                                                                                                      |
| SBIR/FOA for QC system development: Seek<br>3rd party vendors to work with NREL to<br>manufacture inspection systems that could                                                                                                                                                           | Identify at least 5<br>potential<br>candidates       | 9/30/2015 | Appropriate 3rd parties were selected via a<br>competitive FOA process. NREL provided<br>technical input to DOE for the SBIR TTO topic<br>The project is pending award.                                                                                                                                                     |
| NREL will develop a target list of companies<br>with input from AMO, NIST, etc.                                                                                                                                                                                                           | Inspection system<br>designed, built and<br>marketed | 9/30/2015 | Pending awards.                                                                                                                                                                                                                                                                                                             |



# DOE's Clean Energy Manufacturing Initiative

# U.S. DEPARTMENT OF

### Goals of CEMI:

- 1. Increase U.S. competiveness in the production of clean energy products
- 2. Increase U.S. manufacturing competitiveness across the board by increasing energy productivity

### **FY15 Activities:**

- Joint AMO-BTO-FCTO meeting on Additive Manufacturing (Oak Ridge, TN) March 2015
- Regional Summit (Atlanta, GA) July 2015
- Annual Summit with the Council on Competitiveness (Washington, D.C.) September 2015
- Technologist-in-Residence Pilot

#### HOW THE TECHNOLOGIST IN RESIDENCE PILOT WILL WORK:



Key Dates:

Solicitation launched: April 21, 2015 Submission deadline: June 21, 2015

DOE about the most effective process

#### Technologist in Residence Vision:

Catalyze strong national laboratory-industry relationships that result in significant growth in high-impact collaborative research and development

Technologist in Residence Goals:

Increase collaborative research and development between national laboratories and private sector companies Develop a streamlined method for companies to establish long-term relationships with national laboratories that result in collaborative research and development

## **Cross-cutting Manufacturing Activities**



### NNMI Institutes

America Makes - 3D/Additive

DMDII - Digital Mfg. & Design

LIFT - Lightweight Metal Mfg.

Power America - Wide Bandgap Semiconductors

IACMI

**Flexible Hybrid Electronics** 

Integrated Photonics

Clean Energy

**Revolutionary Fibers and Textiles** 



**3D-Printed Shelby Cobra** 

Joint AMO-BTO-FCTO meeting on Additive Manufacturing (Oak Ridge, TN) March 2015



Manufacturing Demonstration Facility (Oak Ridge, TN)

## REGIONAL ACTIVITIES

- Connecticut
  Center for
  Advanced
  Technology
- Northeast Electrochemical Energy Storage Cluster
- Ohio Fuel Cell Coalition

## DOE – EERE

### **Manufacturing R&D**

- EERE Additive Manufacturing Meeting
- CEMI
  - Regional and Annual Summits
- Advanced Manufacturing
  Office
- NREL-LBNL-ORNL collaboration on QC across several technologies (fuel cells, batteries, solar)

### **INDUSTRY**

- GLWN
- Council on Competitiveness
- HTAC Manufacturing Subcommittee

National Collaborations (inter- and intra-agency efforts)

NIST Advanced Manufacturing National Program Office (AMNPO) 21

## Funding Opportunity Announcements

**ENERGY** 

| FOA Title & Link                                                                          | Release<br>Date  | Topics Included                                              | Due Date     |
|-------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------|--------------|
| Hydrogen and Fuel<br>Cell Technologies<br>Research,<br>Development, and<br>Demonstrations | March 3,<br>2015 | Innovative H <sub>2</sub> Delivery Pipeline<br>Manufacturing | June 4, 2015 |

- FCTO seeked applications to develop innovative, low-cost processes for manufacturing Fiber Reinforced Composite Pipe that:
  - Eliminate O-ring failure
  - Are capable of carrying hydrogen at 100 bar
  - Are durable for 50 years
  - · Have a reasonably low leak rate
- The project should lead to:
  - Installed FRP costs that are equivalent to or lower than the cost of installing a natural gas pipeline of the same size
  - Processes that are scalable to high volume manufacturing





### **Quality Control**

• Projects underway to demonstrate in-line QC for MEAs and components

### Manufacturing Competitiveness

- New projects:
  - Global competitiveness analysis GLWN
  - Domestic supply chain development VCU, OFCC

### Fiber-Reinforced Composite Pipeline

- Funding opportunity for:
  - Innovative H<sub>2</sub> Delivery Pipeline Manufacturing

**Proton OnSite** received the 2015 Presidential "E-Award" for significant contributions to increasing U.S. exports

| FY 2015                                                                                                                        | FY 2016                                                                                                               | FY 2017                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2Q FY15: Manufacturing FOA for<br>new R&D projects on hydrogen<br>production and delivery, hydrogen<br>storage, and fuel cells | 1Q FY16: Manufacturing FOA for new R&D projects on hydrogen production and delivery, hydrogen storage, and fuel cells | 1Q FY17: Manufacturing FOA for<br>new R&D projects on hydrogen<br>production and delivery, hydrogen<br>storage, and fuel cells              |
| 4Q FY15: Demonstrate continuous<br>in-line measurement for MEA<br>fabrication from 1-60 ft/min                                 | 3Q FY16: Demonstrate processes for direct coating of electrodes on membranes or gas diffusion media                   | 4Q, FY17 Develop processes and<br>methods to decrease the amount<br>of time and equipment intensity<br>currently required for stack testing |



**Contacts** 



### For more information, contact:

Nancy Garland – Acting Team Lead 202-586-5673 nancy.garland@ee.doe.gov

> Jesse Adams 720-356-1421 jesse.adams@ee.doe.gov