

U.S. DEPARTMENT OF

Hydrogen Production & Delivery Program - Plenary Presentation-

Eric L. Miller

2015 Annual Merit Review and Peer Evaluation Meeting June 8 - 12, 2014

H, Production & Delivery Program Goal

Energy Efficiency & NERGY Renewable Energy Fuel Cell Technologies Office | 2

\$1,000/kW*

80,000 hrs

\$1,500/kW**

*For Natural Gas **For Biogas

Integrated Work Areas Basic & Applied Research Technology Validation and Technology Development Systems Integration & Analysis ransformation Hydrogen Fuel Cell Cost \$40/kW Fuel R&D **Fuel Cell** Production R&D Delivery storage 5,000 hrs **Durability** \$10/kWh Manufacturing R&D H₂ Storage Cost ā (On-Board) 1.8 kWh/L, 1.3 kWh/kg Safety Codes & Standards Education H₂ Cost at Pump

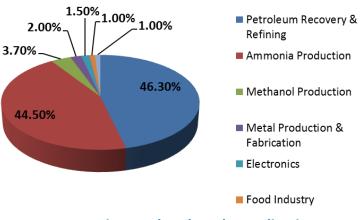
<\$2 Production and <\$2 Delivery & Dispensing

<\$4/gge

Program MYRD&D includes pathway-dependent technical metrics and targets tied to the cost goal

Develop technologies to produce H₂ from clean, renewable domestic resources for <\$4/gge (delivered & dispensed, but untaxed) by 2020

2020 Targets by Application


H₂ Production & Delivery: Current Status

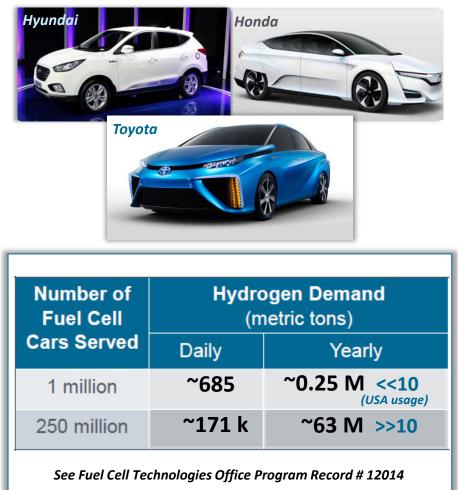
U.S. DEPARTMENT OF ENERGY Renewable Energy Fuel Cell Technologies Office | 3

- ~10 million tonnes H₂ in US from NG reforming for petroleum refining, ammonia production, etc. today
- NG can provide near-term costcompetitive H₂ at scale:
 - <\$2/gge produced (\$4.50/gge delivered)</p>
- >1,500 miles of H₂ pipeline
- ~50 current H₂ stations (10 public)
- Plans for H₂ stations:
 - 100 in CA; 100 each in Germany & Japan
 (1,000 each in Germany & Japan by 2025)
- Growing demand for renewable H₂
 - renewable electrolysis, bio-conversion, etc.

Existing centralized H₂ production facilities

H₂ consumption market share by application

Early adoption of H₂ and fuel cell technologies can leverage production and delivery infrastructure associated with low cost NG reforming


Growing Transportation Market for Hydrogen

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 4

- Fuel cell cars are here today: the Toyota Mirai is the first commercially available fuel cell electric vehicle (FCEV) for sale in the USA
- Fueling infrastructure for FCEV is needed in the immediate near-term
- Traditional resources (natural gas in particular) can meet the near term hydrogen demand
- Large-scale production from renewable resources will be needed in the longterm to meet the needs of emerging FCEV markets and other end uses

Market penetration of FCEVs can have significant energy-security and environmental benefits, if clean/renewable H₂ can be supplied at scale

FCEV Announcements: 2013-2015

Hydrogen P&D Needs and Priorities

U.S. DEPARTMENT OF ENERGY Renewable Energy Fuel Cell Technologies Office | 5

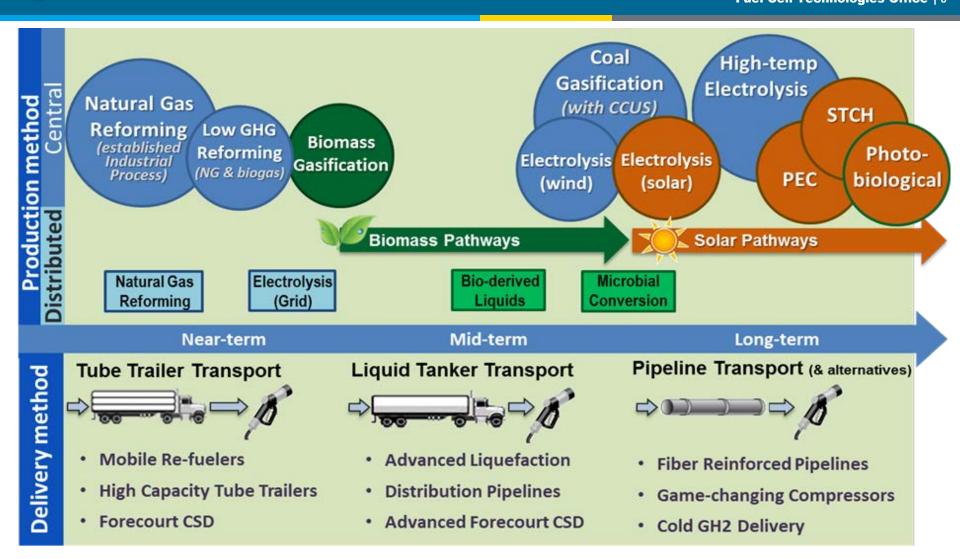
Immediate Needs

- Utilize existing infrastructure (e.g. NG) to support H₂ production and delivery for growing markets in FCEVs and other end uses
- Improve cost, reliability & efficiency of forecourt components, including compressors, hoses, seals and station storage
- Improve reliability and cost of near-term renewable H₂ options, such as renewable electrolysis and bio-derived feedstock conversion

Ongoing Priorities

- Applied RD&D in materials & devices (leveraging basic research) to address efficiencies, performance, durability, cost, and safety in the portfolio of renewable H₂ production and delivery options
- System-level innovations including renewable integration schemes, tri-generation, energy storage, balance-of-plant improvements, etc.
- Continued resource assessments to identify near-term regional solutions and a long-term sustainable portfolio of cost-competitive H₂ production and delivery options

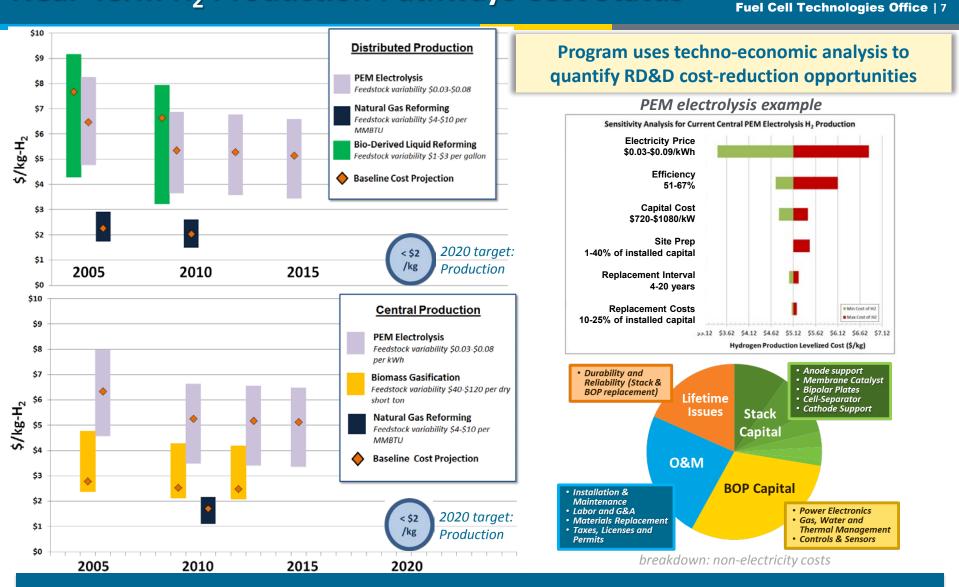
*Large-scale market acceptance of H*² *and fuel cell technologies requires continued cost reductions in hydrogen production and delivery options*



H₂ Production & Delivery RD&D Portfolio

ENERGY Renewable Energy Fuel Cell Technologies Office | 6

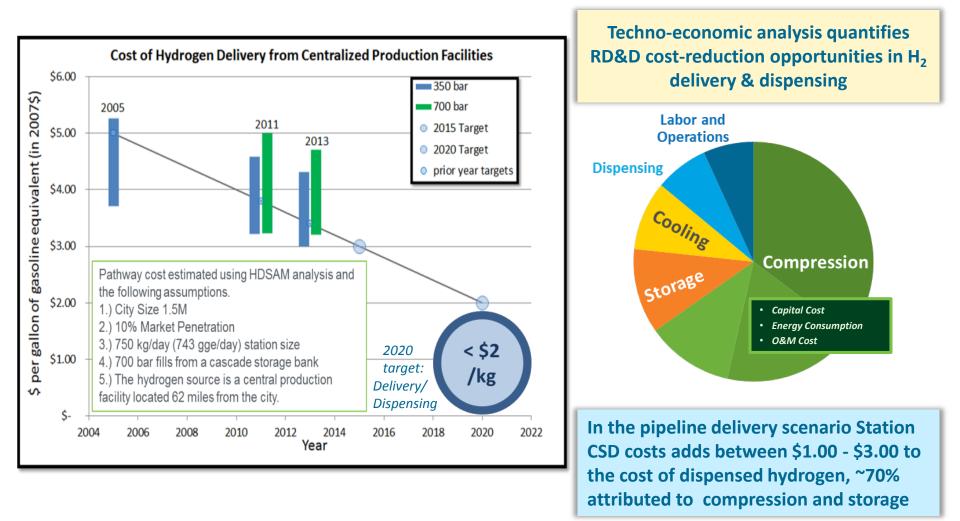
Energy Efficiency &


U.S. DEPARTMENT OF

Addressing the near-term infrastructure rollout needs as well as the longer-term transition to large-scale renewable hydrogen

Near-Term H₂ Production Pathways Cost Status

ENERGY Energy Efficiency & Renewable Energy

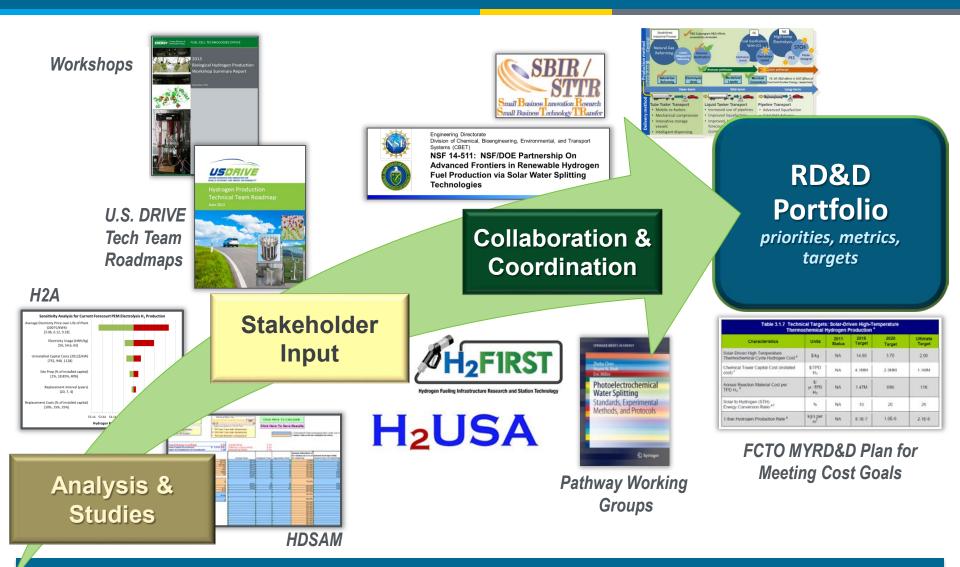


Feedstock & capital cost sensitivities show that NG reforming meets the DOE H₂ cost target - further RD&D is needed to reduce cost of renewable pathways

H₂ Delivery and Dispensing Cost Status

Energy Efficiency & **IH** Renewable Energy Fuel Cell Technologies Office | 8

U.S. DEPARTMENT OF



H₂ delivery and station compression, storage and dispensing costs remain high; reducing cost of 700 bar refueling stations for FCEV roll-out is a critical priority

RD&D Portfolio Development Approach

ENERGY Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 9

Techno-economic analyses & stakeholder input inform programmatic decisions & priorities for P&D portfolio of pre-competitive RD&D

Stakeholder Engagements are Critical

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 10

Ongoing Collaborative Activities

- H2USA Station Working Group and H2First Projects (*NREL / SNL*)
- U.S.DRIVE Tech Teams Production, Delivery, Analysis
- Cross-Office/Agency Collaborations- BES, ARPA-E, NSF
- DOE Cross-Cutting Efforts AMM/MGI, WBS, CEMI, Grid Integration
- FCTO H₂ Working Groups *Electrolysis, PEC, Biological and STCH*
- IEA-HIA Tasks in Renewable Hydrogen & Hydrogen and Infrastructure

Recent Workshops and Meetings

- Workshops –H₂ and Bio-products from Wastewaters (FCTO/BETO);
 International Workshop on H₂ Infrastructure; Advanced Materials Manufacturing
- Meetings & Symposia– Spring ECS Meeting on Cross-cutting Technology Metrics;
 Spring MRS Meeting Session on Photochemical H₂ Production, & others

Collaborative activities, workshops and meetings help focus portfolio RD&D priorities

Welcome BES, ARPA-E and NSF!

H₂ P&D PIs are early adopters of accelerated materials development approaches

Strategies and Key Areas in H₂ P&D Portfolio

ENERGY Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 11

Challenge	Strategies	RD&D Focus	Key Areas
Reduce the cost of sustainable low- carbon hydrogen production & delivery while meeting safety and performance	<i>Near-term</i> Minimize cost of 700 bar hydrogen at refueling stations	 Techno-economic analysis Reliability and cost of compression, storage and dispensing Renewable integration 	 Delivery Polymers & composites for delivery technologies Liquefaction technologies Compressor reliability Low cost onsite storage
requirements • Feedstock costs • Capital costs • O&M costs	Long-term Improve performance and durability of materials and systems for production from renewable sources	 Advanced materials and systems for H₂ delivery Innovations in materials, devices and reactors for renewable H₂ production Improved balance of plant for P&D systems 	 Production Advanced electrolysis Biomass/biogas conversion Hybrid fossil/renewable approaches Solar water splitting: PEC, STCH, biological
	RD&D Supp	oort Framework:	
FCTO FOA & Lab Calls	SBIR/ STTR NSI	F/DOE MOU Project	

A balanced portfolio of pre-competitive RD&D addresses the near and longer term needs for widespread acceptance of H₂ & fuel cells

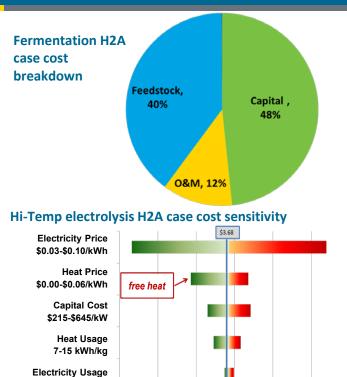
H₂ Production & Delivery Analysis Projects

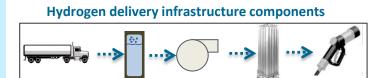
U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 12

Advanced H₂ Production Pathways Analysis

Strategic Analysis Inc., NREL, ANL


- Focus: Analyze H₂ P&D pathways to determine economical, environmentally-benign, and societally-feasible paths for the P&D of H₂ fuel for fuel cell vehicles
- **Highlight:** Completed case studies for high-temperature electrolysis and fermentation using H2A V3.1


Hydrogen Delivery Infrastructure Analysis

ANL, NREL, PNNL, LLNL

FOA/Lab PD014

- Focus: Analyze delivery pathways to assess the impacts of key design and economic parameters, and identify cost drivers of current technologies
- Highlight: Developed the Hydrogen Refueling Station Analysis Model (HRSAM), which determines the current low-volume levelized cost of hydrogen fueling stations given user inputs on station design and utilization

\$2.75

\$3.25

\$3.75

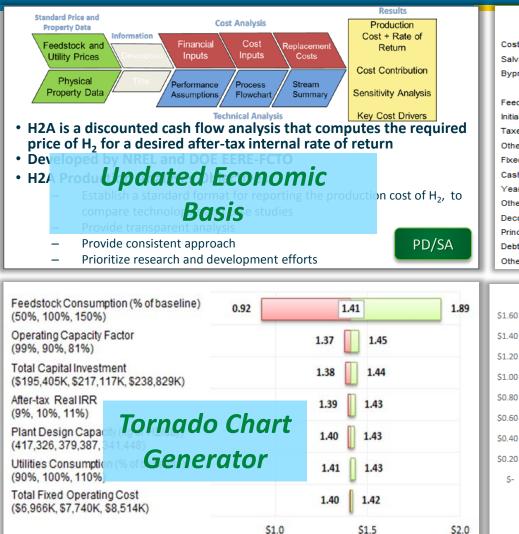
Hydrogen Selling Price (\$/kg)

\$4.25

\$4.75

34.4-35.8 kWh/kg

Capacity Factor 0.95-0.80


\$2.25

Continued improvements in techno-economic analysis tools and case studies

Analysis Accomplishment: H2A Tool Upgrade

U.S. DEPARTMENT OF ENERGY Renewable Energy

Fuel Cell Technologies Office | 13

	per kg H2, levelized, projected to firs	tyear of operation)
Cost of Hydrogen		\$1.41
Salvage Value	\$0.00	
Byproduct Sales	\$0.00	
Feedstock Cost		\$0.94
Initial Equity Depreciable Capital	\$0.20	
Taxes	\$0.10	
Other Variable Operating Costs	\$0.08	
Fixed Operating Cost	\$0.06	
Cash for Working Canston	t Results Displ	av
Yearly Replacement Costs	\$0.01 SOLOTES DISPI	a y
Other Non-Depreciable Capital Costs	Innut Chaot	
Decommissioning Costs OII	Input Sheet	
Principal Payment	\$0.00	
Debt Interest	\$0.00	
Other Raw Material Cost	\$0.00	

New and powerful automated features improve the H2A tool and facilitate the development of advanced case studies

H2FIRST Project Accomplishment

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 14

	CINREL MA2FIRST H2FIRST Referent Design Task	Ence Station	✓ A pi te	nalyzed 160 riority, near echnical fea roduced spa	r-term station o sibility, and ma atial layouts, bi	itations a concepts irket nee Ils of ma	and selected fou based on econo	mics, ng &
	Profile	Site Type	Delivery	Capacity (kg/day)	Consecutive Fills	Hoses	Station Contribution to Hydrogen Cost (\$/kg)	Capital Cost (2009\$)
	High Use Commuter	Gas station or greenfield	Gaseous	300	6	1	\$6.03	\$1,251,270
4	High Use Commuter	Greenfield	Liquid	300	5	2	\$7.46	\$1,486,557
	Low Use Commuter	Gas station or greenfield	Gaseous	200	3	1	\$5.83	\$1,207,663
	Intermittent	Gas station or greenfield	Gaseous	100	2	1	\$13.28	\$954,799

Determination of top-performing station types that best-match market needs, and initiation of detailed conceptual designs

CSD Highlights: Advanced Compression

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 15

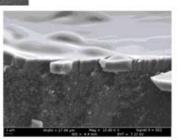
Advanced Barrier Coatings for Seals

GVD, Greene Tweed, ORNL, Hydropac, Praxair

- Focus: Develop a novel vapor deposition process for flexible barrier coatings to prevent hydrogen ingress into seals, e.g., in H₂ compressors
- **Highlight:** Successfully optimized the coating process to reduce seal roughness and defects in the barrier layer, reducing hydrogen permeation

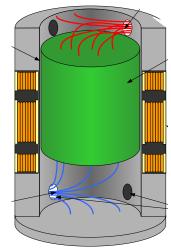
Linear Motor Reciprocating Compressor

Southwest Research Institute, ACI Services


FOA/Lab PD108

SBIR/BES

- Focus: Develop a novel and patented concept of driving a permanent magnet piston inside a hermetically-sealed compressor cylinder through electromagnetic windings to minimize mechanical part count and reduce leakage paths
- **Highlight:** Completed initial design, FEA and thermodynamic analysis of the LMRC


GVD barrier layer coating process

Post coating

LMRC Concept

Addressing critical need to improve compressor reliability and cost

CSD Highlights: Stationary Storage

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 16

Steel/Concrete Composite Vessels

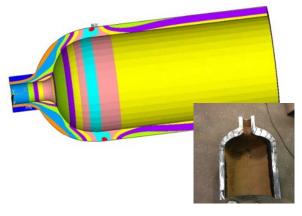
ORNL, Temple U., Wiretough, Hanson Pressure Pipe, Bki

FOA/Lab PD109

- Focus: Develop and demonstrate novel SCCV designs and fabrication technologies that meet DOE technical and cost targets
- Highlight: Identified opportunities for significant cost reductions in the hydrogen permeation barrier, the steel vessel design, the concrete reinforcement design, and in novel sensor technologies

Steel Liner & Steel Wire Wrap Vessels

Wiretough, ORNL, N&R Associates, CP Industries



- Focus: Develop a pressure vessel with a capacity of 765 liters to safely store hydrogen at 875 bar that also meets the DOE storage tank cost target of <\$1000/kg H₂
- Highlight: Completed successful burst test on short wrapped cylinder, including pressures up to 38,100 psi, exceeding the target pressure based on a safety factor of 3

ORNL steel/concrete composite vessel

Wiretough steel liner & steel wire wrap vessel

Addressing near-term need for cost reduction in 875 bar stationary storage

CSD Highlights: Dispenser Hoses

700 Bar Refueling Hose RD&D

Nanosonic, CSA, NREL, Swagelok, Lillbacka

- Focus: Develop a flexible, reliable, and cost effective hydrogen dispensing hose for 700 bar service which can survive 25,550 fills/year cycled to pressures of 875 bar and temperatures as low as -50°C.
- Highlight: The polymer, fiber reinforced hose successfully passed the cold triple flex test with a predicted burst pressure of >1,700 bar

700 Bar H₂ Dispenser Hose Reliability RD&D

NREL, SNL, Spir Star, Colorado School of Mines

FOA/Lab PD100

PD101

SBIR

- Focus: Assess the performance of state-of-the-art dispensing hoses during simulations of 1 year of service (25,000 cycles).
- Highlight: Determined that hose maintains structural integrity under torsional stress from -50°C up to 60°C

Polymer fiber reinforced H₂ dispensing hose

Hydrogen dispenser testing apparatus

Hose segment for torsional stress tests

Addressing near-term need for reliable & cost-effective dispensing hoses

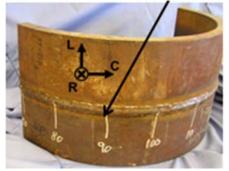
Hydrogen Embrittlement of Pipeline Steels

SNL, ORNL, NIST, ExxonMobil

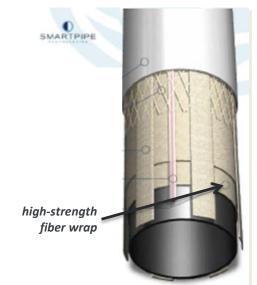
- Focus: Develop a quantitative, predictive model of hydrogen-assisted fatigue crack growth as a function of steel microstructure, and integrate with models of weld microstructures
- **Highlight:** Determined that pipeline wall thickness required for service in hydrogen does not have to exceed that of service in natural gas

Fiber Reinforced Composite Pipelines

SRNL, FRP Manufacturers, ASME, U. of Hawaii


FOA/Lab PD022

FOA/Lab


PD025

- Focus: Provide data to support a technical basis for fiber reinforced piping in hydrogen service, and support integration of FRP into ASME B31.12
- **Highlight:** Successful codification of fiber reinforced pipelines into the ASME B31.12

Testing pipeline steel for H₂ service

Fiber reinforced composite pipeline design

Addressing critical longer term need for cost-effective pipeline delivery options

Production Highlights: Advanced Electrolysis

U.S. DEPARTMENT OF ENERGY Renewable Energy Fuel Cell Technologies Office | 19

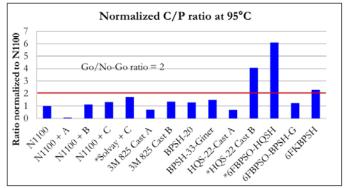
Renewable Electrolysis Integrated Systems

NREL, Xcel Energy, Proton OnSite, Giner, Inc.

PD/TV PD031

- Focus: Provides independent performance testing of advanced electrolyzer stacks, BOP components, and systems for developing and optimizing stack and sub-system performance using grid and renewable power systems
- **Highlight:** Completed installation of large active area stack electrolyzer test bed (sub-MW scale) and dryer skid, and initiated testing of variable flow drying techniques

High Temperature, High Pressure Electrolysis


Giner, Inc., Virginia Tech

- Focus: Develop a PEM water electrolysis process that can provide high-pressure hydrogen at efficiency and durability higher than today's benchmark
- Highlight: Demonstrated operation for 1000 h at 95°C and for 500 h at 95°C and 1000 psi in advanced PEM electrolysis membranes

NREL electrolysis grid-integration test bed

Giner advanced electrolyzer membrane screening

Exploring new modes of operation and system integration for cost-effectiveness

SBIR PD117

Production Highlights: Advanced PEM Electrolysis

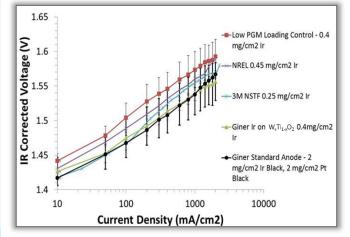
U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 20

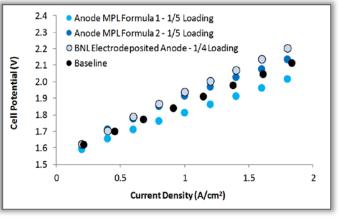
High Performance, Long Lifetime Catalysts

Giner, Inc., 3M, NREL, ORNL, U. Mass Lowell

- Focus: Develop advanced, low PGM-loading catalysts for high-efficiency and long lifetime PEM water electrolysis with improved mass and specific activity
- Highlight: Three different types of low loaded (< 0.5 mg PGM/cm²) anode catalysts demonstrated performance similar to Giner's standard anode (4 mg PGM/cm²)


Low-Noble-Metal-Content Catalysts/Electrodes

Proton OnSite, BNL, U. Connecticut



- Focus: Leverage BNL's low PGM-loading core shell catalyst technology originally developed for PEM fuel cells and transfer to electrolysis
- Highlight: Developed a manufacturable ultra-low loaded cathode with > 500 hrs durability, and demonstrated anode core shell catalysts with activity advantages for enabling lower loadings at equivalent performance

Performance testing of Proton low-PGM anode

Reducing cost through advanced low-PGM catalysts, levering fuel cell RD&D

Production Highlights: Bio-Feedstock Conversion

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 21

Reformer-Electrolyzer-Purifier

FuelCell Energy Inc., UC Irvine

- Focus: Develop a commercial scale REP unit capable of reforming NG or biogas to high purity H₂ with higher efficiency, lower cost and lower CO₂ emissions compared to NG SMR
- Highlight: Demonstrated single cell performance with >30% increase in H₂ production and >20% increase in H₂ purity achieved through implementation of electrolysis step

Rapid Swing Piston Reforming Reactor

PNNL, Cormetech, Washington State U., Dason Technology

FOA/Lab PD111

- Focus: Develop a compact reactor unit that can be readily transported and installed for cost-effective distributed H₂ production from biomass-derived liquids
- Highlight: Identified two promising CO₂ sorbents for respective low-T and high-T sorption, and two promising low-T reforming catalysts through modeling and bio-oil reforming tests

Providing near-term options for low-cost renewable bio-derived feedstocks

Production Highlights: Biological Hydrogen

Fermentative and Electro-hydrogenic H₂

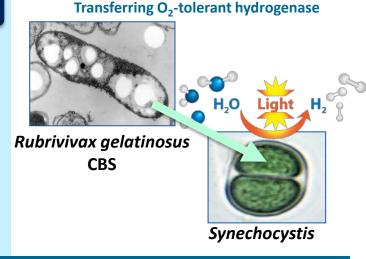
NREL, Penn State

- Focus: Develop fermentation and bio-electrochemical technologies to convert renewable biomass to H₂
- Highlight: Demonstrated hydrogen production at an average rate of 757 mL H₂/L/d from de-acetylated and mechanically refined (DMR) feedstock, which has potential for lower costs

Cyanobacteria with O₂-Tolerant Hydrogenase

NREL

- Focus: Develop an O₂-tolerant cyanobacterial system for sustained light-driven H₂-production by transferring hydrogenases from *Rubrivivax gelatinosus* Casa Bonita Strain (CBS) to the cyanobacteria *Synechocystis*
- Highlight: Confirmed roles of the two different sets of hydrogenase maturation genes, and developed Synechocystis strain that expresses the CBS hydrogenase and maturation proteins


Developing new options for sustainable biological hydrogen production

FOA/Lab

PD095

NREL fermentation test reactor

FOA/Lab PD038

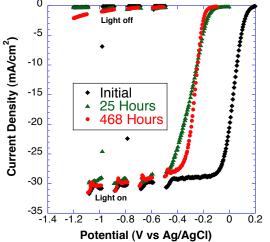
Production Highlights: Photoelectrochemical

High Efficiency Tandem Absorbers

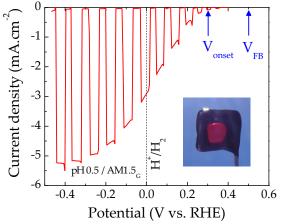
NREL, Stanford, LLNL, UNLV, U. Hawaii, LANL

FOA/Lab PD115

- Focus: Develop III-V semiconductor-based tandem devices capable of >20% solar-to-hydrogen efficiency with >1000 hr durability to meet DOE solar-H₂ cost targets
- Highlight: Demonstrated >460 hr of stabilized device operations using NREL-developed ion bombardment surface passivation process (patent pending)


Wide Bandgap Chalcopyrite Photoelectrodes

U. Hawaii, UNLV, Stanford, LLNL, NREL


FOA/Lab PD116

- Focus: Develop efficient, bandgap-tunable thin-film
 chalcopyrites using an innovative low-cost synthesis process
 with 1.8-2.4 eV bandgaps optimized for solar H₂ production
- Highlight: Successful fabrication of photoactive CuInGaS₂ with controlled composition and tunable bandgap in the 1.5 – 2.4eV range; and initial demonstration of chalcopyrite surface protection with MoS₂

Developing advanced materials & interfaces for efficient solar hydrogen

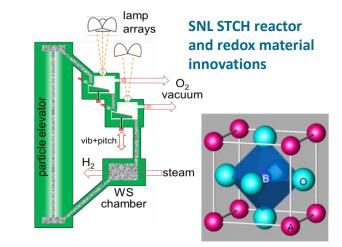
Production Highlights: Solar Thermochemical

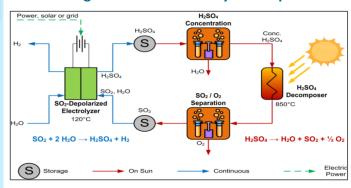
U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 24

High Efficiency Redox STCH Reactor

SNL, ASU, Bucknell, CS Mines, Northwestern, Stanford, DLR

FOA/Lab PD115


PD096


- Focus: Develop novel cascading pressure particle receiverreactor and new materials for two-step, non-volatile metal oxide thermochemical water-splitting cycles
- Highlight: Designed a prototype 3kW cascading pressure reactor/receiver, and extended approach to material discovery and engineering of thermochemical properties

Solar Hybrid Sulfur Cycle System

SRNL

- Focus: Develop efficient process for coupling the hybrid sulfur (HyS) STCH cycle with concentrated solar energy using an advanced high-temperature electrolysis step
- Highlight: Designed a Solar HyS process that uses a bayonet acid decomposer and thermal energy storage, including an Aspen Plus[™] flowsheet and performance evaluation

Flow diagram of SRNL solar HyS STCH process

Developing new materials and reactors for high-T solar hydrogen

FOA/Lab

Production Highlights: Solar Thermochemical

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 25

Flowing Particle Bed STCH Redox Reactor

CU Boulder, NREL

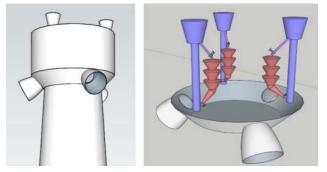
- Focus: Design and test individual components of a novel flowing particle STCH water splitting system capable of producing 50,000 kg H₂/day at a cost < \$2/kg H₂
- Highlight: Completed flowing particle reactor design, including AspenPlus process modelling; and synthesized >2g Hercynite active material by spray drying, and characterized for composition, particle size, & surface area

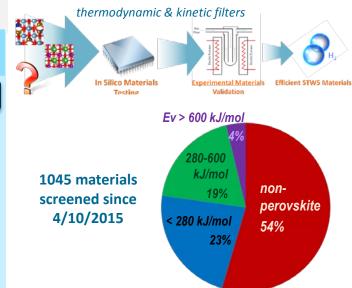
Accelerated Discovery of Redox Materials

CU Boulder

- Focus: Use state-of-the-art electronic structure theory to develop design rules for new materials and develop digital data base for material screening to down-select candidate redox materials with the best performance
- **Highlight:** Screened 1,045 possible binary perovskites, of which 199 materials show potential for use in STCH

Collaboratively discovering & developing new STCH materials & reactors


FOA/Lab


NSF/DOE

PD114

PD120

CU Boulder STCH receiver/particle reactor design

NSF-DOE Joint Projects on Solar Hydrogen

NSF/DOE MOU

 US DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 26

Engineering Directorate Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) NSF 14-511: NSF/DOE Partnership On Advanced Frontiers in Renewable Hydrogen Fuel Production via Solar Water Splitting Technologies

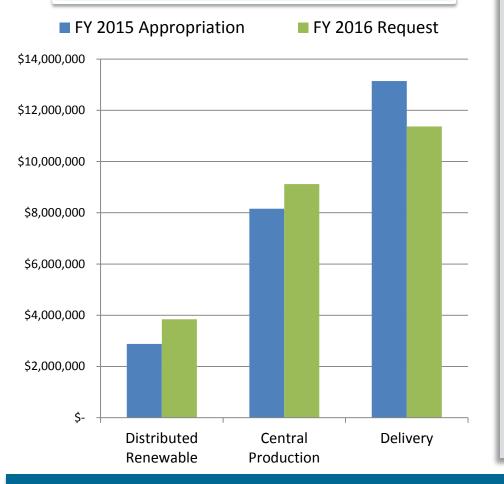
PD118 New Metal Oxides for Efficient Hydrogen Production Via Solar Water Splitting

- The University of Toledo, Yanfa Yan
- PD119 Engineering Surfaces, Interfaces, and Bulk Materials for Unassisted Solar Photoelectrochemical Water Splitting
 - Stanford University: Thomas Jaramillo
- PD120 Accelerated Discovery of Advanced Redox Materials for Solar Thermal Water Splitting to Produce Renewable Hydrogen
 - The University of Colorado at Boulder: Charles Musgrave

PD121 Tunable Semiconductor/Catalyst Interfaces for Efficient Solar Water Splitting

Rutgers University New Brunswick: Charles Dismukes

Investigating the fundamental mechanisms of solar water splitting materials and devices in support of FCTO's applied H₂ production RD&D


- **Gas Technology Institute,** *Des Plaines, Illinois, will assess the technical and economic feasibility of thermal compression for cost-effective pressurization of hydrogen to 700 bar for hydrogen fueling stations, as well as demonstrate the concept in a small-scale test system*
- **Proton OnSite,** Wallingford, Connecticut, will advance alkaline exchange membrane-based electrolysis technology by developing durable and efficient PGM-free electrolysis cells
- Versa Power Systems, Littleton, Colorado, will develop hydrogen production technologies using high temperature solid oxide electrolysis capable of operating at high current densities (i.e., high hydrogen production rates) and high efficiencies
- University of California, Irvine, will develop a novel photocatalyst particle-based slurry reactor with the potential for low-cost renewable hydrogen production via solar water splitting
- **Virginia Tech,** *Blacksburg, Virginia, will develop a cell-free biological hydrogen production technology based on an in vitro synthetic biosystem composed of numerous thermoenzymes and biomimetic coenzymes*

High-risk / high-reward projects complementing FCTO RD&D in: compression, advanced electrolysis, PEC and biological H₂

Hydrogen Production & Delivery Budget

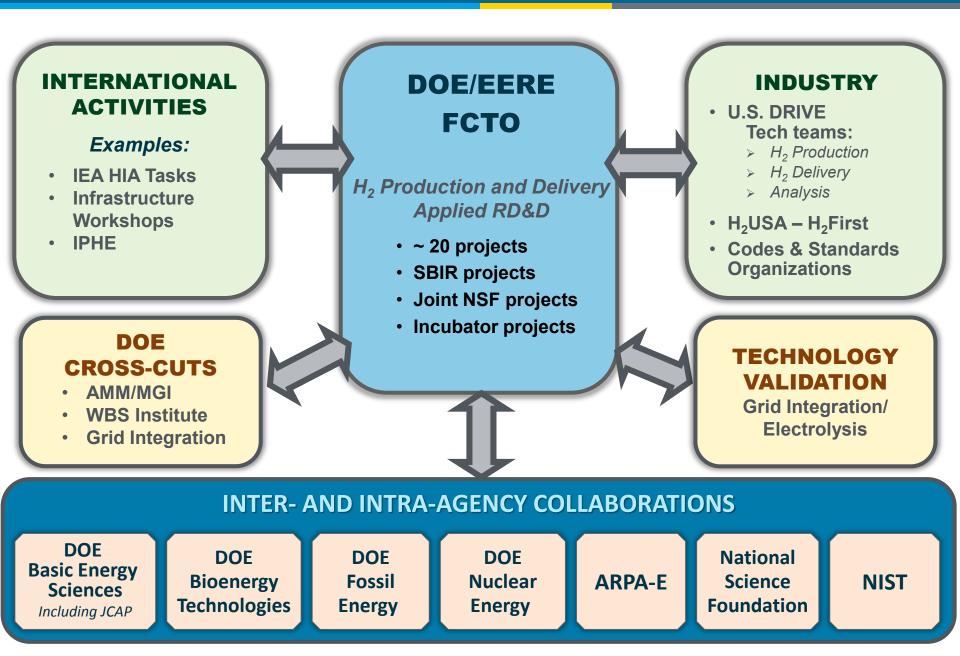
U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 28

FY 2016 Request = \$23.6M FY 2015 Appropriation = \$19.6M

EMPHASIS

- Continued Analysis of Production & Delivery Pathways
 - Fermentative H₂ Production
 - High Temperature Electrolysis
 - Integrated Analysis of Project Pathways

Develop Balanced Portfolio of Near-, Mid- and Long-term P&D technologies

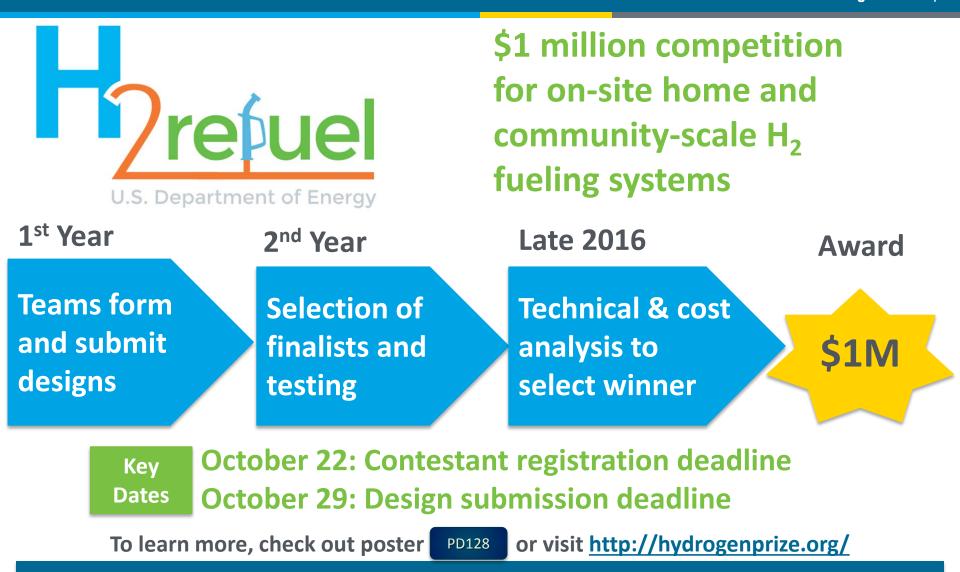

- P&D Infrastructure RD&D
- RD&D of Cost-effective Forecourt Components for 700 bar Refueling
- RD&D of Renewable Production from Diverse Pathways
- Continued Cross-Office Coordination and Collaboration
- Continued International Collaborations and Communications

Stabilized budgets are critical to sustaining balanced RD&D portfolio in H₂ P&D; Continued leveraging of broader research resources remains important

Hydrogen Production & Delivery Collaborations

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 29


Recent Activities and Upcoming Milestones

- U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 30
- Workshops, including FCTO/BETO Joint Workshop, International Infrastructure Workshop
- Awarded 9 P&D projects from FY14 Production and Delivery RD&D FOAs, and 5 Incubator selections
- Awarded 4 projects under joint FOA with NSF addressing Solar Water Splitting
- Two topics in FY15 FCTO FOA and 2 areas of interest in FCTO FY15 Lab call to balance portfolio
- Initiated 2 new projects under H2First in support of the H2USA mission
- Cross-office collaborations with AMM/MGI, CEMI, WBS Institute, Grid Integration
- Webinars on topics including infrastructure, AMM/MGI projects, WBS opportunities & H-Prize

4Q 2014 Successfully negotiated and awarded nine P&D projects	Launched H2 Refuel H-Prize competition	ecords on cost OEC and stora	date low forecourt age to meet 2015 cost et. Rel wid nev sub app	lease of Office- le FOA with w P&D topics, oject to propriations	4Q 2017 Design a reactor/receiver system for solar- based central production of > 50,000 kgH ₂ /day.	4Q 2017 Complete development of advanced H ₂ metering technology.
	FY 2015		FY 20		FY 20	
4Q 2014 Selected and awarded four projects from NSF/DOE Joint Solicitation	3Q 2015 Demonstrate potential for PEC systems with > 15% STH efficiency.	4Q 2015 Evaluate P&D technologies against 2015 metrics	1Q 2016 Negotiate and award FY15 Office Wide FOA Selections	3Q 2016 FCTO/WBS workshop on power electronic for electrolysis	4Q 2016 H2 RENEW collaborations subject to appropriations	2Q 2017 Joint NSF funding opportunity subject to appropriations

H2 Refuel H-Prize Announced in 2014

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 31

Promoting H₂ fueling system development in the community

Hydrogen P&D Topics in FY 2015 FOA

ERGY | Energy Efficiency &

Fuel Cell Technologies Office | 32

FOA Title	Release Date	Topics Included	Due Date
Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations	3/2/2015	 Subtopic 1a: Microbial Biomass Conversion Subtopic 1c: Integrated Intelligent Hydrogen Dispensers for 700 bar Gaseous Refueling of Fuel Cell Electric Vehicles 	6/4/2015

Hydrogen Production by Microbial Biomass Conversion

- Fermentation, microbially-aided electrolysis, or hybrid processes that integrate multiple systems
- Demonstration of hydrogen production of at least 5 LH2/L-reactor/day on average in a system operating for at least 24 hours continuously, at a reactor scale of at least 1 liter

Integrated Intelligent Hydrogen Dispensers for 700 bar Gaseous Refueling of FCEVs

- Improved reliability of state-of-the-art communication equipment to ensure complete fills
- Targets dispensing accuracy of at least 4%, and cost reduction in dispensing components
- Enabling complete SAE J2601 fills, and adaption of alternative filling methods

Continuing to fill gaps in the RD&D portfolio, guided by stakeholder engagements and techno-economic analysis

With the growing importance of renewable hydrogen to energy security and the environment, experts in all fields of renewable hydrogen have an opportunity to work collaboratively to address key cross-cutting technical challenges in catalysis, separations, material compatibility, systems & grid integration, etc.

DOE EERE Renewable Hydro	ogen Production	Welco	ome Eric L. 🔻 (
	DOE EERE Renewable Hydrogen Production	This Site 🔽	عر
Renewable H2 Home	IEA-HIA Photoelectrochemical SolarThermochemical Renewable Electrolysis Biological Hydrogen DOE Wo	orking Group Projects	Site Actions •
View All Site Content	WELCOME	Current Action Items	Ŧ
Documents		Current Action Items Title	 Assigned To
Documents = FAQs and Help Docs	welcome to the Renewable H2		Assigned To All members
Documents = FAQs and Help Docs = Shared Documents Pictures		Title	2
Documents = FAQs and Help Docs = Shared Documents Pictures = Image Library	to the Renewable H2 Sharepoint Site!	Title UPDATE YOUR PROFILE! Flowing Particle Bed Solarthermal Redox Process to	All members
Documents = FAQs and Help Docs = Shared Documents Pictures = Image Library People	to the Renewable H2 Sharepoint Site! a shared resource and repository of expert	Title UPDATE YOUR PROFILE! Flowing Particle Bed Solarthermal Redox Process to Split Water	All members
Documents = FAQs and Help Docs = Shared Documents Pictures = Image Library	to the Renewable H2 Sharepoint Site!	Title UPDATE YOUR PROFILE! Flowing Particle Bed Solarthermal Redox Process to Split Water	All members
Documents = FAQs and Help Docs = Shared Documents Pictures = Image Library People	to the Renewable H2 Sharepoint Site! a shared resource and repository of expert	Title UPDATE YOUR PROFILE! Flowing Particle Bed Solarthermal Redox Process to Split Water Add new item	All members All members
Documents = FAQs and Help Docs = Shared Documents Pictures = Image Library People = All People	to the Renewable H2 Sharepoint Site! a shared resource and repository of expert	Title UPDATE YOUR PROFILE! Flowing Particle Bed Solarthermal Redox Process to Split Water Add new item External Links	All members All members Ingies Office Merit Review

Cross-cutting session of H₂ Production Working groups being held Wednesday at 5:15 PM

Bringing together leading experts in electrolysis, STCH, PEC and bio-conversion

U.S. DEPARTMENT OF ENERGY Renewable Energy Fuel Cell Technologies Office | 34

Eric Miller, Program Manager (202) 287-5829 eric.miller@ee.doe.gov

Katie Randolph (720) 356-1759 katie.randolph@ee.doe.gov

Sarah Studer (202) 586-4031 sarah.studer@ee.doe.gov Erika Sutherland (202) 586-3152 erika.sutherland@ee.doe.gov

David Peterson (720) 356-1747 david.peterson@ee.doe.gov

Neha Rustagi (202) 586-8477 neha.rustagi@ee.doe.gov

Amit Talapatra (Energetics, Inc.) amit.talapatra@ee.doe.gov

> Kim Cierpik (CNJV) kim.cierpik@ee.doe.gov

http://energy.gov/eere/fuelcells/fuel-cell-technologies-office