

Electrochemical Hydrogen Compressor

Ludwig Lipp FuelCell Energy, Inc. June 10, 2015

Project ID #PD048

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 7/15/10
- Project End Date: 7/14/15

Budget

Total Project Value: \$2,623,213

- Total Recipient Share: \$629,571
- Total Federal Share: \$1,993,642
- Total DOE Funds Spent*: \$1,676,849

Ż

*As of 1/31/15 FuelCell Energy

Barriers

- Barriers addressed for gaseous hydrogen compression:
 - More reliable
 - Lower-cost
 - Higher efficiency

Partners

- Collaborations: Sustainable Innovations, LLC
- Project lead: FuelCell Energy

Relevance

Objective: Develop solid state hydrogen compressor technology for vehicle refueling with greater reliability, scalability and lower costs

Impact of EHC:

- Increased reliability/availability over current mechanical compressors
- Ensures "no possibility of lubricant contamination" (No moving parts) → Fuel cell quality H₂
- Increases compression efficiency to 95% (DOE 2015 Target)
- Potentially reduces cost of H₂ delivery to <\$1/gge (DOE Long Term Target)

Relevance

EHC Advantages Over Mechanical Compressor for Refueling:

- Lower maintenance cost: No moving parts, longer MTBF
- No noise: Can be permitted in high visibility area
- No contaminants added: No lubricants required maintains ultra-high H₂ purity required by FCV at lower cost
- Versatile guard bed for impurities
- Robust for fast-fill: No shock and vibration caused by rapid and frequent start-up/shut-down cycles and variable fill rates
- Potentially eliminates expensive pre-chilling equipment: Much lower temperature rise during compression
- Higher overall efficiency: Efficient under variable operating conditions; efficient at low inlet pressures
- Thus lower overall delivered hydrogen cost

EHC is ideally suited for hydrogen refueling

FuelCell Enerav

Approach

- Use high-pressure electrolyzer experience for mechanically robust cell design over a wide range of operating pressures
- Multi-cell stack and larger cell area to increase hydrogen compression capacity
- Reduce capital and operating costs by higher current density operation with enhanced thermal management
- Increase H₂ recovery efficiency by improved fluids management and flowfield design
- Reduce capital cost by reducing number of parts per cell

Approach

ITEM		APPROACH
Increase Pressure, Life, Efficiency		-Cell & Stack Design Enhancements -MEA Improvements
Lower System Cost		-Thermal Management and Integration -Increase Single-Stage Pressure Capability
Design Development & Scale-Up	2	 -Lower Cost Materials of Construction -Lower Part Count -Design for Manufacturing & Assembly -Stack Scale-up -Hybrid Operation

6

Principle of Electrochemical Hydrogen Compressor

PV = nRT

Rather Nernst Eqn:

- Simple operating principle with no moving parts Solid State !
 - Use of hydrogen electrode for high compression efficiency

7

EHC Single Cell Data

EHC Pressure Capability Progression

20 EHC-i EHC-ii cm² cells EHC-iii EHC-iv Program Progress 15 2 EHC-v Specific Energy Consumption, 🐹 EHC-vi Adiabatic w/60% Eff 3-Stage Mechanical (kWh/kg-H2) Nernst Voltage 10 5 0 4,000 0 1,000 2,000 3,000 5,000 Hydrogen Product Pressure, (psi)

Met DOE 2015 pressure target for small compressors

EHC Durability

0.2 lb/day, >**16,000 hrs,** 185 cm² cell

> **0.1 lb/day, 10,000 hrs,** 82 cm² cell

0.5 lb/day, 3,000 hrs, 5-cell 82 cm² stack

2 lb/day, >3,000 hrs, 8-cell 185 cm² stack

Cumulatively >30,000 hr Cell And Stack Operation

EHC Durability Improvement

10,000 hrs Operation at ~95% H₂ Recovery in 81 cm² Cell

>16,000 hrs at >95% H_2 Recovery in 185 cm² Cell

EHC Stack Development

	3-Cell Stack #1	3-Cell Stack #2	3-Cell Stack #3	5-Cell Stack	10-Cell Stack	8-Cell Stack 185 cm ²	30-Cell Stack 82 cm ²	30-Cell w/fins 82 cm ²
Pressure, (psig)	4,550	Up to 1,000	2-3,000	Up to 3,000	Up to 3,050	3,000	4,500	4,500
Current Density, (mA/cm²)	500	Up to 2,200 ^{&}	500	450	500	500	200	400
Capacity, (lbs/day)	0.2	Up to 0.8	0.2	0.3	0.6	2	1	2
Operation, (hours)	150	~100	>2,000+	1,800	~400	>3,000	>3,000*	>200†

* Currently In Operation at FCE

[†] At Sustainable Innovations

[&] Thermal Management needs further improvement

Cumulatively >10,000 hrs of Stack Operating Experience

Sustai

Cell-to-Cell Performance Variation

12

Thermal Management Options Investigated

- Liquid Cooling:
 - Stable operation demonstrated up to 1,000 mA/cm² at 3,000 psi
 - Recirculation pump reliability is a concern for long-term operation
 - In multi-cell stacks observed higher cell-to-cell performance variation
- Gas Phase Cooling:
 - Stable operation demonstrated up to 100-400 mA/cm² at 4,500 psi
 - Simpler and more reliable
 - Used heat transfer modeling to increase the current density

Thermal Management Model* for Stack with Cooling Fins

- Heat loss at endplates is neglected in long stack model case
- Accurate if end plates are insulated to induce temperature uniformity at end cells
- Heat is assumed to be generated uniformly in active area
- Convection coefficient is estimated for free convection
- Dramatic increase in convective surface area with fins addition: from 3 to 50 in²

FuelCell Energy

14

Fins increase heat exchange area by ~20x

* Developed by Sustainable Innovations for NASA application

Thermal Modeling Results

No significant

impact on cost No increase in envelope dimensions

 Safe Operating Temperature Limit

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 Radial Position (m)
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

With thick membrane can increase current density to 400 mA/cm² = 4x increase compared to no fins With thin membrane can further increase current density to 800 mA/cm² Sustainable

15

EHC Capacity Scale-up

Cell area: $82 \rightarrow 185 \text{ cm}^2$ Stack: $1 \rightarrow 30 \text{ cells}$

1-2 lb/day 30-cell stack Up to 10 lb/day (NASA Program – 12 cells of 800 cm² area)

H₂ capacity increased by two orders of magnitude

FuelC

EHC Building Block Design for Multiple Applications

Current Density	100 mA/cm ²	200 mA/cm ²	400 mA/cm ²	1,000 mA/cm ²
150-cell stack 82 cm ²	1 kg/day	2 kg/day	4 kg/day	10 kg/day
Thermal Management	Convection Cooling (static)	Convection Cooling (forced)	Improved Convection Cooling (high- conductivity fins)	Enhanced Convection Cooling (liquid)

Phased capacity addition required by the emerging refueling infrastructure is easily met by increasing number of building blocks at a given site

Hybrid EHC for Multiple Applications

The Hybrid System Minimizes the Risk for Commercialization

Collaborations

Prime

- FuelCell Energy, Inc. (Industry):
 - System development and application engineering
 - Membrane and electrode design and fabrication
 - Validation testing

Subcontractor

- Sustainable Innovations, LLC (Small Business):
 - Cell and stack design, modeling and fabrication
 - Scale-up design and fabrication
 - EHC stack cost reduction and estimates

Proposed Future Work

- Complete endurance testing of single cell and 30-cell stack
- Develop building block design for 10 kg/day capacity for refueling and other commercial applications (3,000 psi stage 1)
- Estimate cost reduction benefits of hybrid EHC system for gaseous and liquid hydrogen refueling
- Prepare final report

Achievements in EHC Technology Development

Parameter	Program Goals	Current Status	
Hydrogen Product Pressure	Up to 3,000 psi building block, 6-12 kpsi	12,800 psi single stage 6,000 psi 2-stage	•
Hydrogen Inlet Pressure	5 - 300 psi	0 – 2,000 psi	\
Compression Ratio	Up to 300:1	300:1	\
Hydrogen Recovery Efficiency	90 - 95%	>98%	V
Hydrogen Flux	500 -1,000 mA/cm ²	500-1,000 mA/cm² for >10,000 hrs (185 cm² cell)	\
Hydrogen Capacity	2-4 lb/day at 3,000 psi	2 lb/day at 3,000 psi (up to 10 lb/day at SI)	\
Endurance Capability	1,000 hrs at 3,000 psi	>10,000 hrs at 3,000 psi	V
Compression Efficiency	<10 kWh/kg at 3,000 psi	3-12 kWh/kg from <30 to 3,000 psi	\

Successfully Met all Program Goals

Project Summary

Relevance: Provide highly efficient, reliable and cost-effective hydrogen compression (up to 6,000/12,000 psi)

Approach: Develop electrochemical compressor – solid state device

Technical Accomplishments:

- Scaled-up to 30-cell stack with low-cost high-reliability thermal management
- Operated >16,000 hrs in 185 cm² cell at high H₂ recovery (\geq 95%)
- Demonstrated 2 lb/day capacity at 3,000 psi in 185 cm² stack

Collaborations: Active partnership with industry (Sustainable Innovations) on materials, design and fabrication

Proposed Future Work: Scale-up to taller stack to further increase throughput and lower the cost

Technology Transfer Activities

- Discussed with LLNL EHC system for compression of LH₂ boil-off for GH₂ vehicle refueling
- Discussed with NREL potential siting of EHC at ESIF
- Identified applications of EHC in Tri-gen systems for FCV refueling in California
- DOE-NASA meeting to explore EHC applications

Acknowledgement

- FCE: Pinakin Patel, Ray Kopp, Jonathan Malwitz, Paul Pinard
- Sustainable Innovations, LLC: Trent Molter and team
- DOE: Erika Sutherland, Dave Peterson

