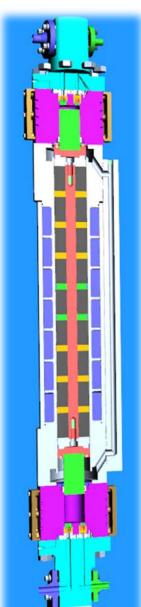
Hydrogen Compression Application of the Linear Motor Reciprocating Compressor (LMRC)

Buddy Broerman (PI)

Southwest Research Institute

Norm Shade


ACI Services

June 10, 2015

SOUTHWEST RESEARCH INSTITUTE

Project ID: PD108

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Barriers

Description	Date / Timeframe	Barriers	Targets
Project Start Date	9/05/14	Low Compressor	>73% Isentropic
Project End Date	10/04/17	Efficiency	Efficiency*
Project Duration	3.0 years	Capital Cost	<\$240,000 per compressor**
Project Progress	6 months	O&M Costs	<\$4.900 por voor

Budget

- Total Project Budget: \$2,284,553
 - Total Cost Share: \$459,160
 - Total Federal Share: \$1,825,393
 - Total DOE Funds Spent*: \$314,392

* As of 4/10/15, includes ACI's March 2015 charges 06/10/2015

<\$4,800 per year** U&IVI COSTS * DOE Project Target ** Targets in the MYRD&D for 2020

Partners

- **US DOE:** Project Sponsor and Funding
- SwRI: Project Lead
- **ACI Services**: Project Partner

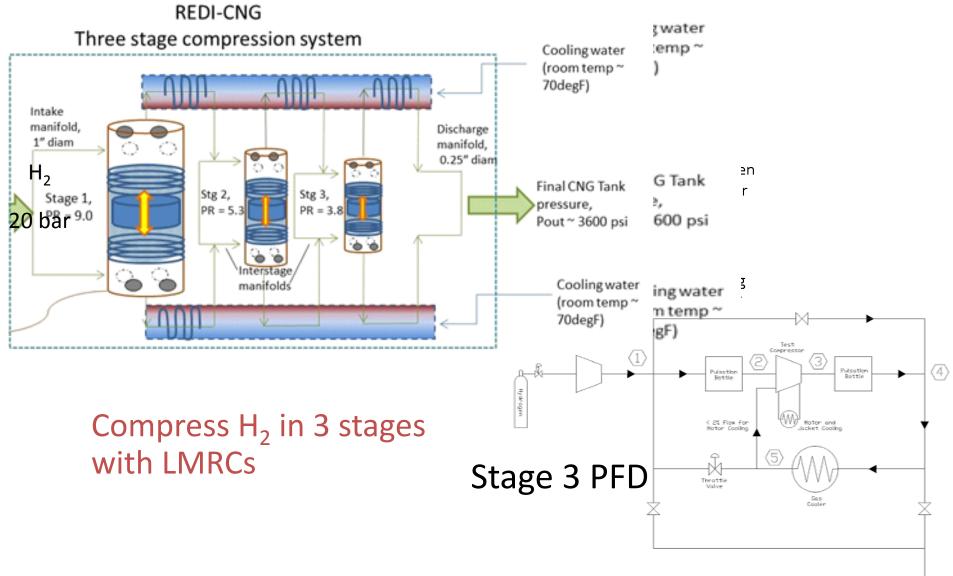
Relevance

- Project Objectives:
 - Improve isentropic efficiency above 95% by minimizing aerodynamic losses
 - Low speed
 - High valve area ratio
 - Reduce capital costs to half that of conventional reciprocating compressors by minimizing part count
 - Reduce required maintenance by simplifying the compressor design to eliminate common wear items
- This Budget Period (Fiscal Year 2015):
 - Design LMRC to be tested in BP2 and BP3
 - Analyze LMRC to predict efficiency and operability
 - Current isentropic efficiency predicted to be approximately 90%

Approach / Milestones

Fiscal Year 2015 – Design All 3 Stages

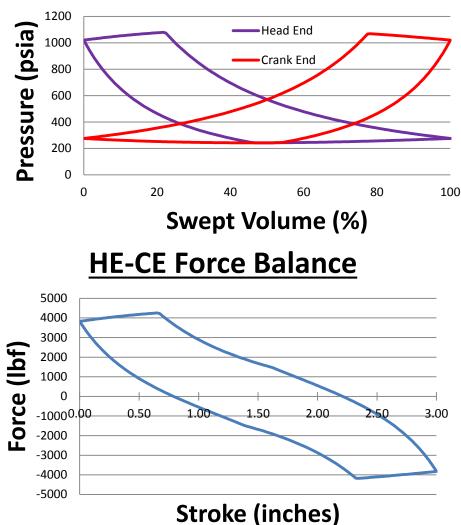
Task Title	Milestone Description (Go/No-Go Decision Criteria)	% Complete	
Stage Sizing	Provide cylinder size for each stage and accompanying calculations.	100	
Basic Mechanical Design	Provide FEA results and analysis, basic structural design, and material selection.	65	
Linear Motor Design	Provide linear motor design, including required magnet size and configuration of windings.	100	
Bearing and Seal Design and Analysis	Provide selected bearing and seal technology and supporting calculations.	60	
Valve Selection	Provide the valve type that will be used for the proposed system.	50	
Pulsation Control Design	Provide pulsation control design and/or techniques such that the predicted piping system pulsations are at or below the amplitudes specified in the API Standard 618.	25	
Cooling System Design	Provide cooler sizes and cylinder cooling specifications	40	
Materials and Coatings Selection	Deliver material specifications and manufacturer availability	80	
Performance Predictions and Comparison	Deliver performance predications and final CFD calculations	60	


Approach / Milestones

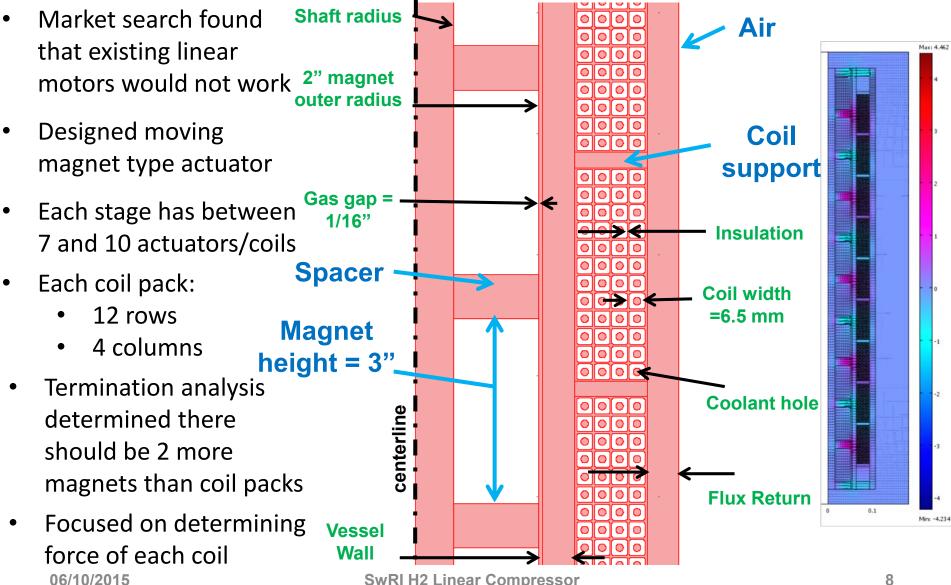
Fiscal Year 2016 – Fabricate and Test HP Stage

Task Title	Milestone Description (Go/No-Go Decision Criteria)	Planned Quarter
Detailed Mechanical	Provide final fabrication drawings of each compressor component	5
Design	and manufacturing/assembly drawings of the components	
Estimate Cost Projection for full-scale version	Deliver cost estimate and calculations for a full-scale version	6
Design of Compressor	Test Matrix for Bench Scale Testing. Plans for Commissioning,	6
Test Stand for HP Stage	Safety, and Operation of Test Stand. Provide final compression	
	system and test stand design.	
High Pressure (HP) Stage Compressor Parts	Order or fabricate the compressor parts in accordance with the detailed design.	7
Fabrication		
High Pressure (HP) Stage	Complete assembly of the compressor based on the detailed	7
Compressor Assembly	design.	
Test Stand Construction,	Manufacture the test stand using the drawings and details created	7
Compressor Integration	in the previous budget period.	
Commissioning & Startup	Verify and report the operability of the compressor and test stand.	8
of Demonstration Model		
Bench Scale Testing	Report on the completion of the single-stage testing.	8

Overall Concept

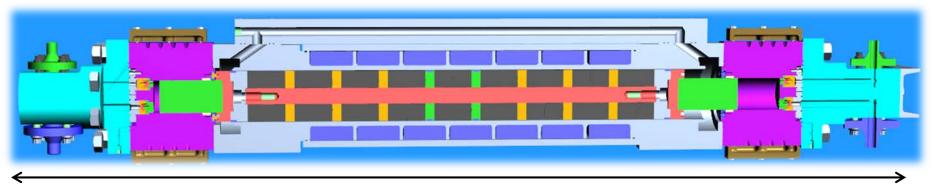


Stage Sizing

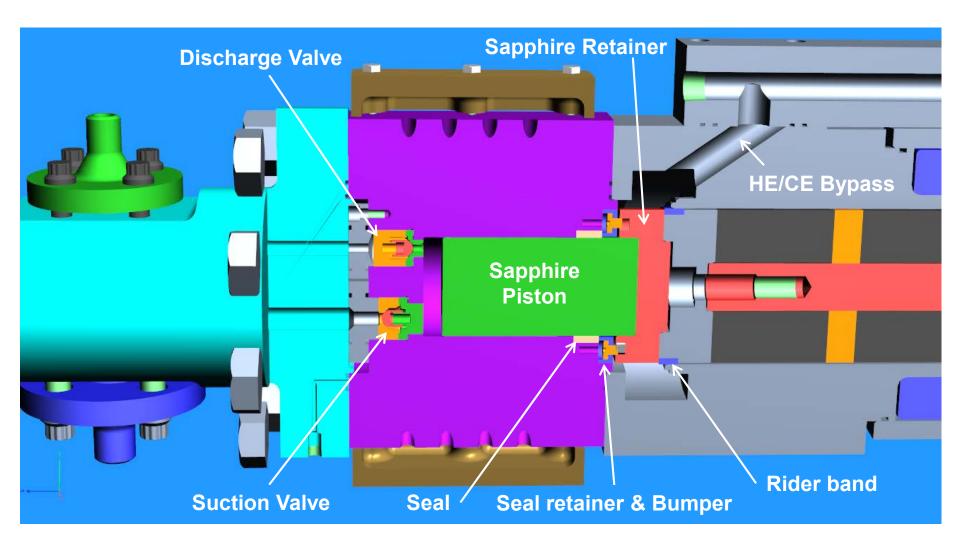

- Cylinders were sized to meet the required compression (20 to 875 bar) and flow (10 kg/hr) in 3 stages
- Sized for 95% isentropic efficiency per stage
- Inter-stage cooling planned for increased efficiency
- Supporting calculations based on reciprocating compressor performance equations

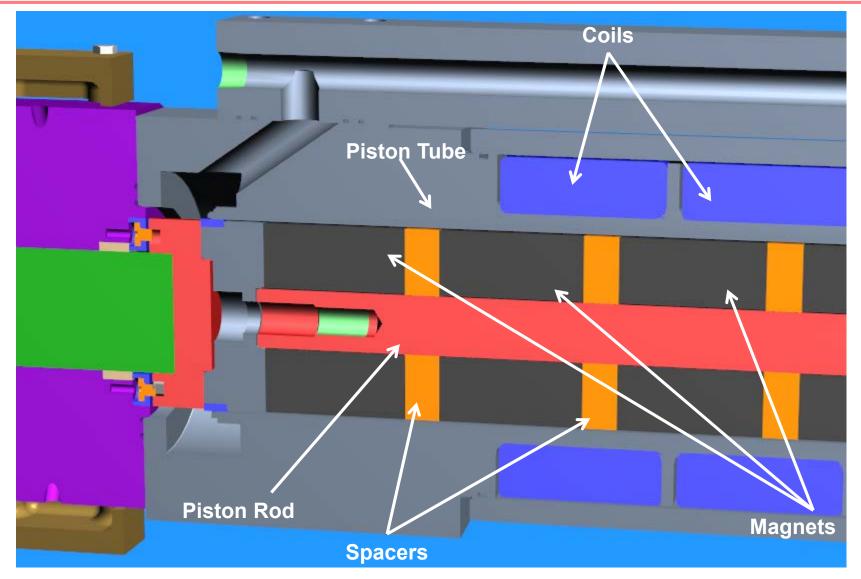
Stage 1 P-V Diagram

Linear Motor Design


SwRI H2 Linear Compressor

Accomplishments and Progress: LMRC Design Overview

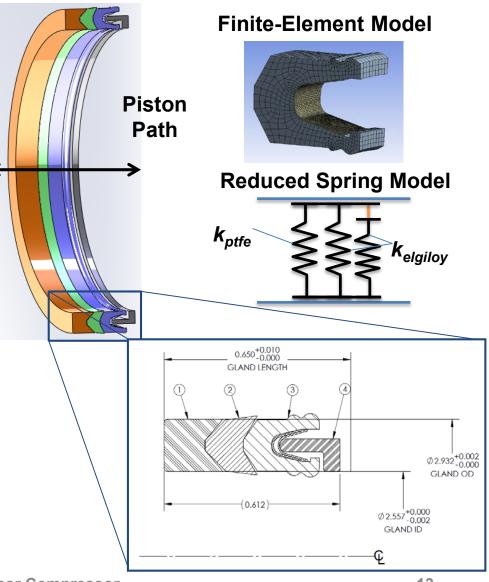

- A preliminary structural design has been created and a preliminary FEA has been performed
- The configuration of Stage 1 is shown below with 7 Coils and 9 magnets



Accomplishments and Progress: 3D Model: Piston Close-up

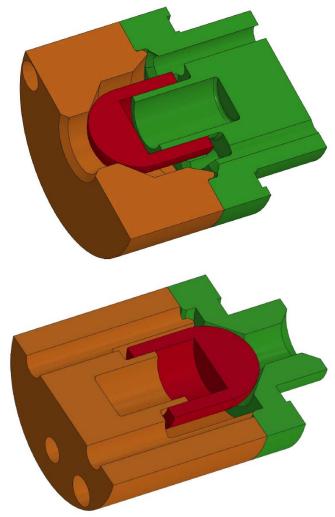
Accomplishments and Progress: 3D Model: Magnet/Coil Close-up

Material Selection


- Detailed material selection was performed to ensure components are made with materials resistant to hydrogen embrittlement and with sufficient strength
- Primary structural components:
 - A286
 - $\circ~$ For Structural Components
 - Good resistance to hydrogen embrittlement
 - \circ High strength material
 - $\circ\,$ Low magnetic permeability
 - Carbon Steel 1010
 - $\circ~\mbox{For spacers between magnets}$
 - Good resistance to hydrogen embrittlement
 - Moderate Strength material
 - High magnetic permeability

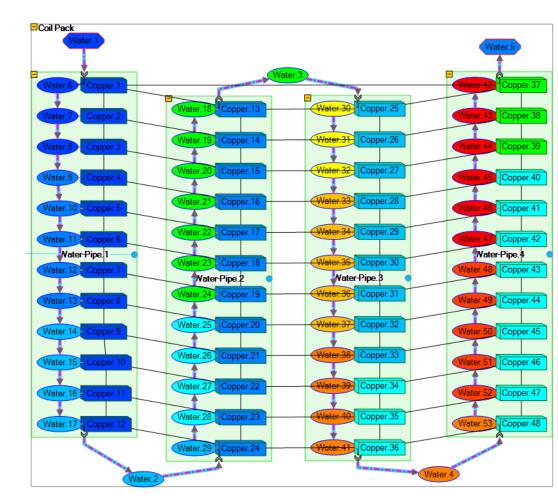
- Moving Seal:
 - PTFE (Poly Tetra Fluoro Ethylene) Teflon [®]
 - PEEK (Poly Ether Ether Ketone)
 - Elgiloy
- Piston
 - Sapphire
 - $\circ\,$ Low coefficient of friction
 - Allows testing of high-life sapphire-onsapphire seals after testing with poly seals
- Magnets
 - Neodymium Iron nickel coating
 - Ultra strong magnets
 - \circ Nickel coating avoids H₂ embrittlement

Moving Seal Design


- The design of the bearing/seal is complete
- A two step analysis is underway to determine seal acceptability:
- 1. Finite element analysis of seal under the range of expected pressure conditions to determine how the gap size varies and seal deforms
- 2. Reynold's equation coupled with spring representation of seal to predict the leakage rate

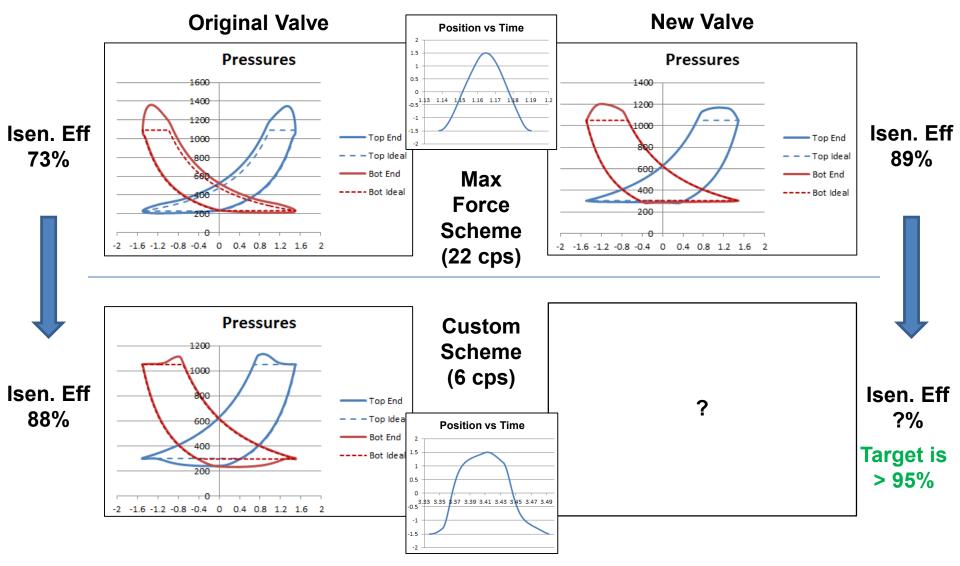
Accomplishments and Progress: Valve Selection/Design

- Market search determined that major manufacturers do not have any products that fit the desired operating conditions
- ACI has experience designing and building replacement and custom compressor valves
- The compressor design has a low throughput & tight space constraints therefore a single poppet valve has been identified as a solution
- Stage 1 valves are designed and being finetuned with performance analysis
- Stages 2 and 3 valves will be designed


Cooling System Design

Inter-stage Cooling

 Several manufacturers will be able to operate in the desired environment and the next step is to downselect the exchangers that are best for this application


Coil cooling

- Peak current of 600 A will be traveling through the coils
- Therefore a conjugate heat transfer model (SINDA/FLUINT) was used to determine conditions required for adequate cooling

Accomplishments and Progress: Performance Prediction/Control Scheme

Responses to Previous Year Reviewers' Comments

• This project started 6 months ago and was not reviewed last year.

- DOE Sponsor, Steering
- SwRI Project lead, design, location for testing
- ACI Services Overall project partner, lead for mechanical design, fabricator of some parts
- Thar Energy Project partner, seal and sapphire piston design
- American Applied Materials Corporation (AAMC) – Neodymium Iron Magnets
- Carotron, Inc. Power Supply

- 1. Mechanical design of compression stages 2 and 3
- 2. Piston Seal verification/design
- 3. Design efficient valves for given application
- 4. Coils cooling system for stages 2 and 3
- 5. Compressor generated pulsations
- 6. Evaluate overall system thermal growth

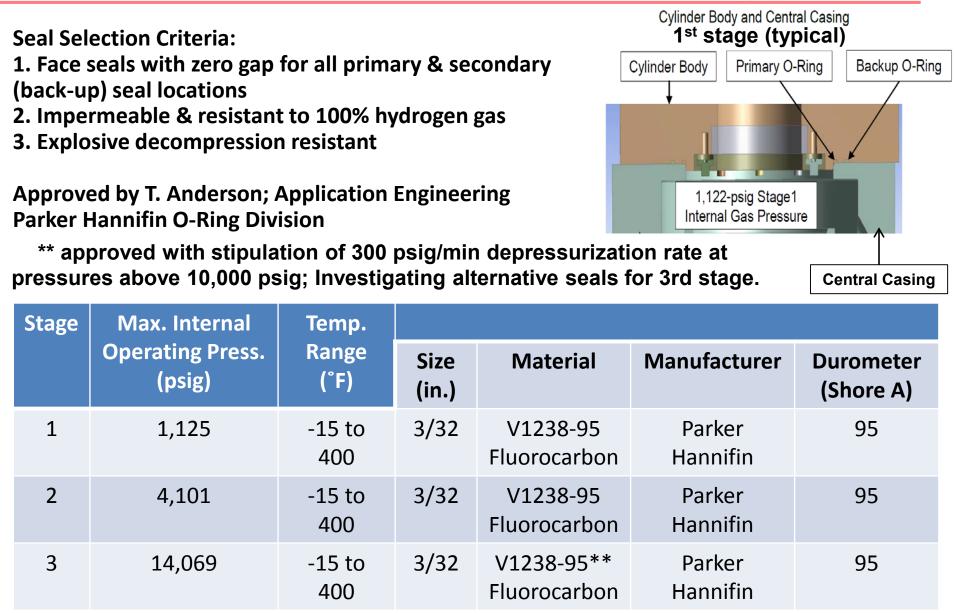
Proposed Future Work

- 1. FEA and design modifications/updates for compression stages 2 and 3 design
 - a) Bumper/stop design
- 2. Piston seal analysis/evaluation
- 3. Valves
 - a) Performance analysis (stage 1)
 - b) Valve design & performance analysis (stages 2 & 3)
- 4. Coils cooling system design for stages 2 and 3
- 5. Pulsation Analysis
- 6. System thermal analysis

- Significant progress made for stage sizing, motor design, mechanical design, and performance/controls software
- Stage 1 overall design nearly complete
- Efficiency predictions near 95%
- Currently no technical/commercial off-ramp issues identified

Thank You

We will be happy to answer any questions


Buddy Broerman Senior Research Engineer <u>EBroerman@swri.org</u> 210-522-2555 Norm Shade Senior Consultant, and President Emeritus <u>NShade@aciservicesinc.com</u> (740) 435-0240 ext. 504

Technical Backup Slide

Technical Backup Slide

Materials selected for each of the compressor components, and the significant mechanical and physical properties for each

									-
COMPONENT	MATERIAL	TENSILE	YIELD	ENDURANCE	MAGNETIC	COEFFICIENT OF	YOUNG'S	INFORMATION	Ĺ
		STRENGTH	STRENGTH	STRENGTH	PROPERTIES	EXPANSION (77-212 °F)	MODULUS	SOURCE	
	[]	1'	['			(IN / IN / °F)	['	<u>ا'</u>	1 - Carpenter Steel Corp. Data Sheet
Central Casing	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)) 9.17 x 10 ⁻⁶	28.8 x 10⁵ psi	1,2,7	2 - AMS 5737P Standard for A-286
Magnet Spacers	AISI M1010 hot rolled bar or	47 ksi	26 ksi	21 ksi	Magnetic (3290Mu)	6.78 X 10 ⁻⁶	29 X 10 ⁶ psi	3,4,5,15	3 - MatWeb
	AISI 1018 hot rolled bar	69 ksi	47 ksi	31 ksi	Magnetic (2540Mu)	6.50 X10 ⁻⁶	29 X 10 ⁶ psi		4 - Ryerson Data Book
Piston Rod	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	5 - ASM Metals Handbook
	AISI M1010 hot rolled bar or	47 ksi	26 ksi	21 ksi	Magnetic (3290Mu)	6.78 X 10 ⁻⁶	29 X 10 ⁶ psi	3,4,5,15	6 - Special Metals Co. Data Sheet
	AISI 1018 hot rolled bar	69 ksi	47 ksi	31 ksi	Magnetic (2540Mu)	6.50 X 10 ⁻⁶	29 X 10 ⁶ psi		7 - "Physical Properties Data Compilations Relevant to
Magnet Holder	Incoloy 903 Sol & Age	190 ksi	160 ksi	68 ksi	Magnetic	4.0 x 10 ⁻⁶	21.35 x 10 ⁶ psi	6,14	Energy Storage - V Mechanical Properties Data",
	AISI 1018 or M1010	69 / 47 ksi	47 / 26 ksi	31 / 21 ksi	Magnetic (2540 / 3290Mu)) 6.5 / 6.78 x 10 ⁻⁶	29 x 10⁵ psi	3,4,5,15	HM Ledbetter, NSRDS , Jan. 1982
Piston	Sapphire	58 ksi	NA	NA	NA	3.4 x 10 ⁻⁶	50 x 10 ⁶ psi	16	8 - Suhm Spring Works Data Book
Cylinder	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi		9 - AMS 4027N Standard (Aluminum Alloy Sheet and Plate)
Head	AISI 316 Annealed	85 ksi	36 ksi	29 ksi	Non-Magnetic (1.008Mu)) 8.89 x 10 ⁻⁶	28 x 10 ⁶ psi	5,10	10 - Alcoa Aluminum Handbook
Suction/Discharge	,	ı'	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	ſ <u></u>	-	11 - Iron Castings Handbook (Iron Castings Society)
Valves	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10⁵ psi	1.7.7 -	12 - ASTM A536 Standard (Specifications for Ductile Iron Castings)
Rider Bands	PEEK (PTFE filled)	ı'	·			· · · · · · · · · · · · · · · · · · ·	ſ <u></u>	-	13 - ASTM B152 Standard (Copper Sheet, Strip, and Plate) 14 - ASTM A193 B7 Standard (Alloy Steel & Stainless Steel Bolting)
Thar Seal Rings	Filled PTFE	1,	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		14 - ASTMA193 B7 Standard (Alloy Steel & Stalniess Steel Bolting) 15 - Yeadon Handbook of Small Electrical Motors (Soft Magnetic
Thar Seal Springs	Elgiloy (Cold Drawn & aged)	350/220 ksi	NA	NA	Non-Magnetic	NA	29.5 x 10⁵ psi	8	Materials Properties)
Seal Retainer Bolting	AISI 316 ASTM F593 Gr 2 Cond.CW	V 100 ksi	65 ksi	34 ksi	Non-Magnetic (1.008Mu)) 8.89 x 10 ⁻⁶	28 x 10 ⁶	22	16 - Roditi Data Sheet
Valve Springs or	Elgiloy (Cold Drawn & aged) or	350/220 ksi	NA	NA	Non-Magnetic	NA	29.5 x 10 ⁶ psi	8	17 - Clark, R. "Magnetic Properties of Materials"
Piston Travel Stop Springs	MP35N (Cold Drawn & aged) or	330/230 ksi	NA	NA	Non-Magnetic	NA	34 x 10 ⁶ psi	8	· · · · · · · · · · · · · · · · · · ·
<u>ا </u>	AISI 316 (Cold Drawn)	245/110 ksi	NA	NA	Non-Magnetic (1.008Mu)) NA	28 x 10 ⁶ psi	8,3	ſ <u> </u>
Valve Poppets	PEEK (Unfilled)	13-15 ksi	NA	NA	NA	26.7 x 10⁻⁵	NA	20,21	18 - AZO Materials Web Site
Valve Nose Gasket	Cooper (OFHC)C10200/C10100	31.9 ksi	10 ksi	NA	Non-Magnetic (0.999Mu)) NA	NA	3,17	19 - "A Silicon - Containing, Low-Expansion
Valve Retainer	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	Alloy with Improved Properties", DF Smith ar
Cylinder Cooling Jacket	Aluminum 6061-T6	40 ksi	35 ksi	12.4 ksi	Non-Magnetic (1.000 Mu)) 13.1 x 10 ⁻⁶	10.0 x 10 ⁶ psi	9,10,17	JS Smith, Huntington Alloys
Coil Housing	Ferritic Ductile Iron Casting	1′	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	ſ <u> </u>	· · · · · · · · · · · · · · · · · · ·	20 - MakeltFrom.com, Materials Properties
<u>ا</u>	ASTM A536 Gr. 60-40-18	60 ksi	40 ksi	27 ksi	Magnetic (1500Mu)	6.5 x 10⁻⁵	24.5 x 10 ⁶ psi	11,12	21 - Victrex - PEEK Data Sheet
External Bolting	Alloy Steel A193-B7	125 ksi	105 ksi	61.2 ksi	Magnetic	6.78 X 10 ⁻⁶	29.7 x 10 ⁶ psi	14,3	22 - ASTM F593 Standard Gr.2 Cond. CW
Bolting for Piston	17-4PH H1150-D or	125 ksi	105 ksi	62.5 ksi	Magnetic	6.6 X 10 ⁻⁶	28.5 X 10 ⁶ psi	1,3	(Specification for Stainless Steel Bolts)
Holder & Magnet Retainer	17-4PH H1150-M	115 ksi	75 ksi	57.5 ksi	Magnetic	6.6 X 10 ⁻⁶	28.5 X 10 ⁶ psi	1,3	Ē
	· · · · · · · · · · · · · · · · · · ·				1	· · · · · · · · · · · · · · · · · · ·		,	C

Technical Backup Slide

Control panel for developing control schemes while simulating LMRC motion and predicting performance (+ many other system characteristics)

