Monolithic Piston-Type Reactor for Hydrogen Production through Rapid Swing of Reforming/Combustion Reactions

Project ID #PD111

PI: Wei Liu Pacific Northwest National Laboratory 6/11/2015

Pacific Northwest NATIONAL LABORATORY

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start November 2014
- End October 2017
- 15% Complete

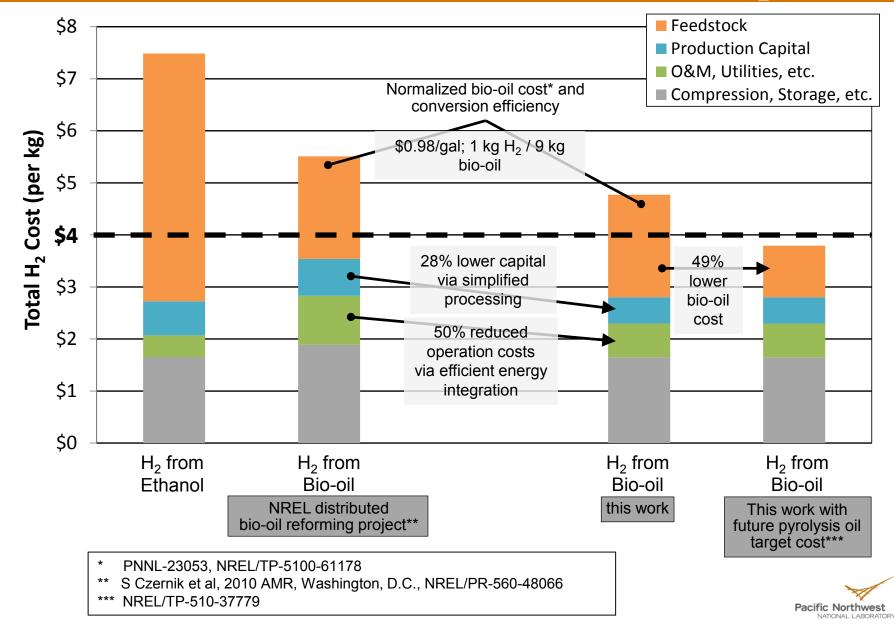
Budget

- □ Total Project Budget \$2,755K
- □ Total Recipient Share \$555K
- □ Total Federal Share \$2,200K
- Total DOE funds spent* \$350K
 *as of 3/31/15

Barriers

- □ Barriers addressed:
 - Plant capital cost and efficiency (unit scale of economy)
 - Operations and Maintenance (O&M)

□ Target:


 Cost of distributed H₂ from bio-mass to <\$4/Kg H₂

Partners

- Cormetech
 - Monolith support
 - Catalyst/sorbent commercialization
- Washington State University
 - Reforming catalysis and kinetics
- Dason Technology
 - Integrated test apparatus
 - Process development

Relevance - H2A analysis (HPTT feedback) Impacts of production technology innovations on H₂ cost

3

Relevance Facilitating DOE's H₂ Cost Goal = \$4/gge

Bio-oil reforming technology advancements being pursued in this work

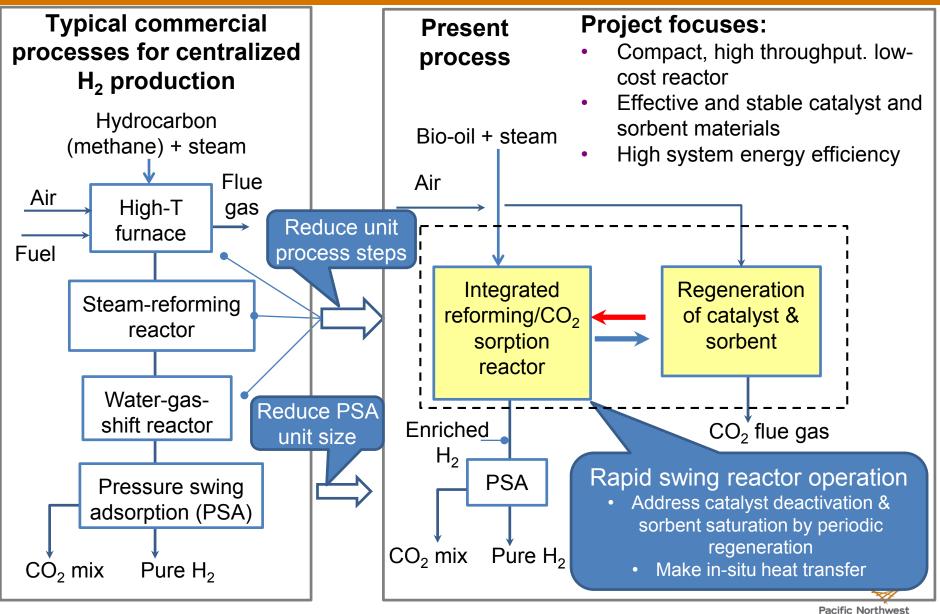
1. Reduced Capital Costs of Plant

- Minimizing unit operations (e.g., no furnace requirements)
- Smaller PSA, smaller (or possible elimination of) WGS, no air separation
- Process simplification minimizes BOP components

2. Increased Energy Conversion Efficiency

- In situ CO_2 capture, push thermodynamics of reforming to higher conversion
- In situ heat exchange between reaction & regeneration to minimizes heat loss
- 80% energy conversion efficiency achievable (versus 71.4% for methane reforming, 2011 status)

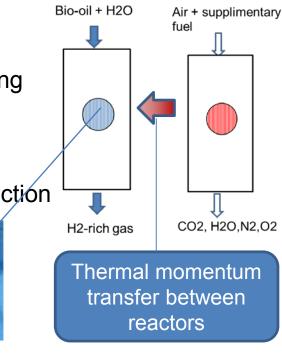
3. Increased Durability


- Reduced O&M (operations & maintenance) requirements
- Directly addresses coking & catalyst deactivation
- Modular, compact reactors to make unit turn-around easier

4

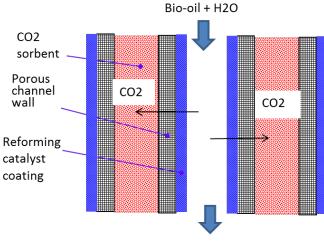
Approach – our process innovations

Reduce unit process steps and intensify heat/mass transfer



VATIONAL LABORATOR

Approach – monolith reactor innovation for rapid (1-10 min) swing operation


Reforming conditions:

- T < 600°C, P < 24 bar
- Endothermic steam-reforming reaction
- Coking & de-oxygenation reaction
- Exothermic carbonation reaction

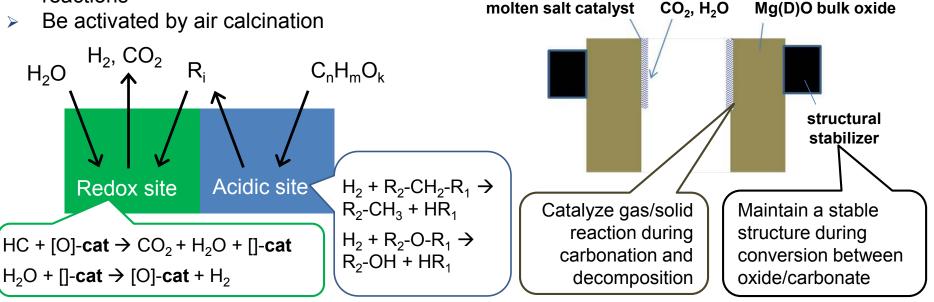
Regeneration conditions:

- T < 750°C, P ~ 1 bar
- Exothermic coke combustion
- Endothermic carbonate decomposition

Design features:

- Place catalyst/sorbent at the same spot to achieve rapid mass and heat transfer
- Have straight flow channels to minimize dead space and pressure drop
- Fix the sorbent and catalyst to avoid attrition and hydrodynamic erosion

H2-rich stream


Approach - materials innovation for integrated steam-reforming and CO₂ carbonation

Composite catalyst of synergistic functions

Provide redox and acidic sites for concerted cracking and reforming and reactions

CO₂ sorbent with tailored properties

- > Work under the reforming conditions
- Provide adequate working capacity, rapid kinetics, and stability

Reforming catalysts are designed based on team's previous experiences and synergistic catalyst design model
Liu. Chem. Eng. Sci. 62(2007)3502-3512.

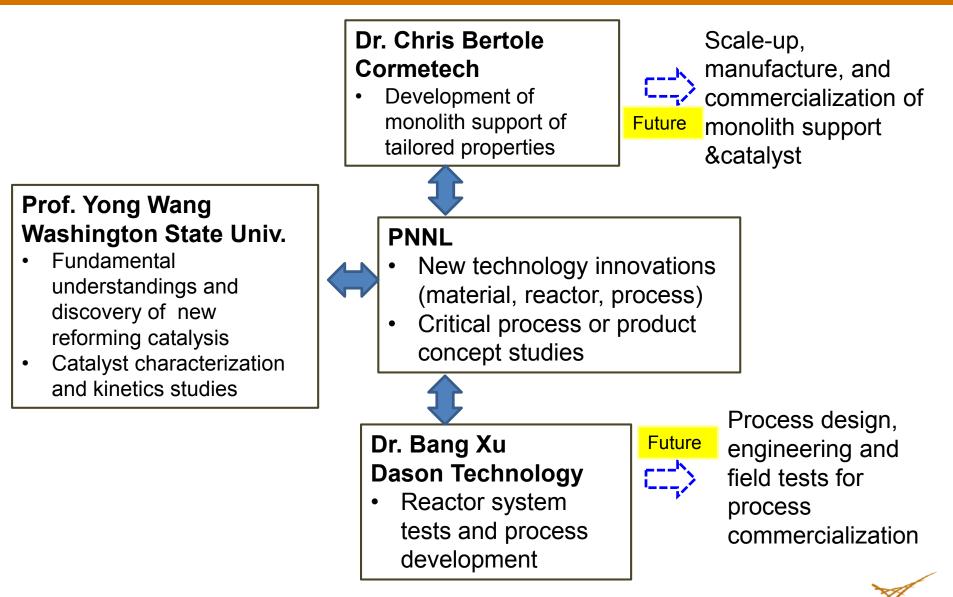
CO₂ sorbents are formulated based on previous CO₂ capture studies at PNNL

Zhang et al. Int. J. Greenhouse Gas Control 12 (2013)351-358.

Approach - milestones addressing three critical challenges

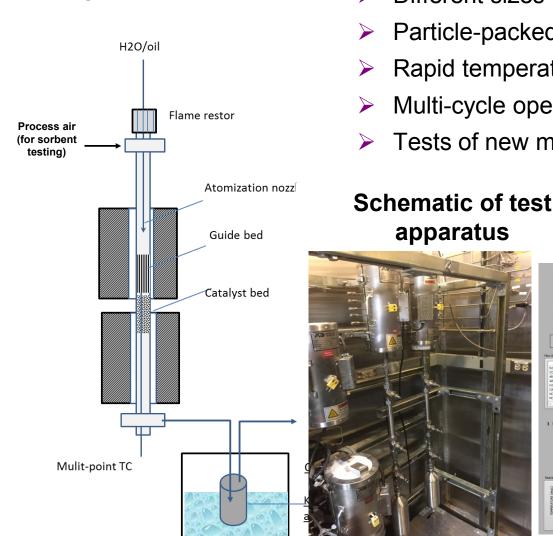
- **Milestone 1** (FY15) material innovations: development of optimum reforming catalysts and in-situ CO_2 sorbents under proposed operation conditions (*single-tube reactor tests at gram levels*)
- H₂ productivity (0.6 [kg-H₂/h]/kg of catalyst
- CO₂ capture productivity >0.2 [kg-CO₂/h]/kg of sorbent

Milestone 2 (FY16) – **monolithic reactor innovation**: demonstration of in-situ CO_2 capture for pure H_2 production and catalyst/sorbent stability (*single-tube* & *integrated reactor tests in tens of g level*)

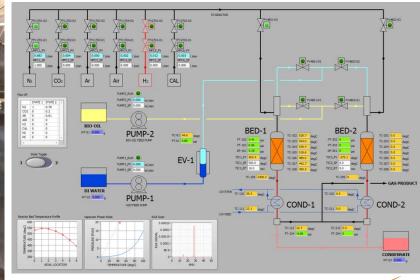

- >100 cycles of reforming/regeneration tests with production of >90% pure H₂ at GHSV >10,000 v/v/h
- Update techno-economic analysis

Milestone 3 (FY17) – **process innovation**: Demonstration of an integrated reactor system with technical readiness level \geq 4 (*tests in hundreds of g level*)

- H₂ production capacity =2 kg/day, >90% H₂ in reactor, >99% H₂ after PSA
- $\geq 10 \text{ wt\% H}_2 \text{ yield}$
- A mobile testing skid for continuous swing reactor operation



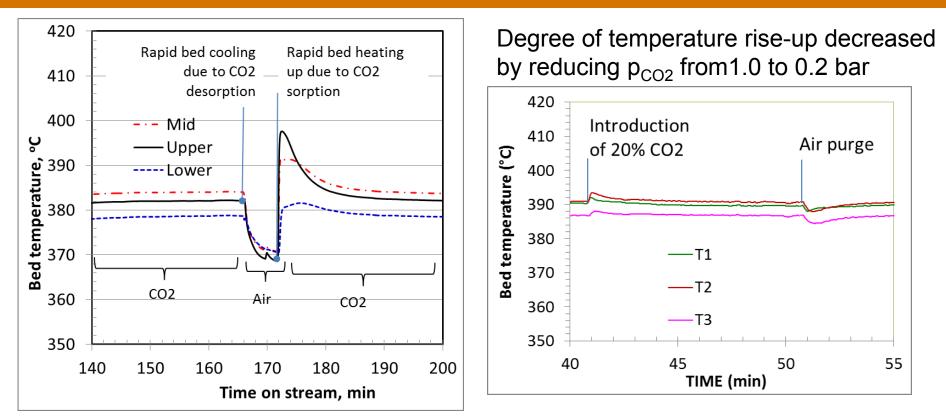
Collaboration and technology transfer


Single-tube reactor

Versatile laboratory-bench system built for reaction/sorption tests

- Different sizes of reactor tubes
- Particle-packed and monolith-inserted beds
- Rapid temperature or pressure swing
- Multi-cycle operation
- Tests of new materials and new process concepts

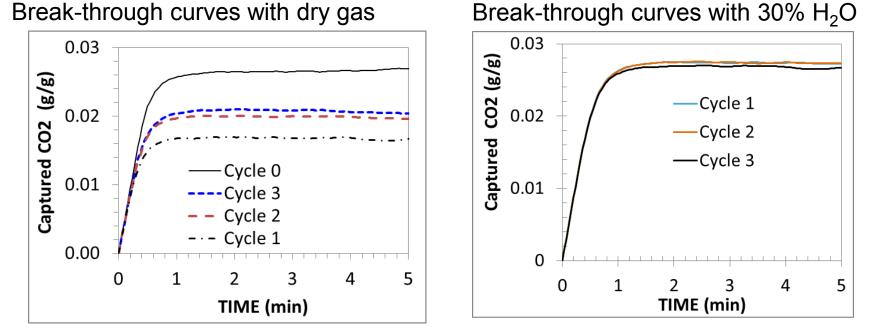
CO₂ sorbents prepared in-house and screened by TGA tests


Material + promoters	Working capacity measured with multiple cycles of CO₂ sorption/air purge, wt%[sorption↔regeneration temperature]			
	360°C↔450°C	400°C↔500°C	500°C↔750°C	
MgO	60% 1 st cycle <1% cycles 2+	Temperature too high for sorption		
MgO +Na ₂ CO ₃	15% stable	15% stable	T too high for sorption	
СаО	Temperature too low for regeneration			
Decomposed dolomite	5-8% stable	20% 1 st cycle <1% cycles 2+	25%	

Promising sorbent materials and respective operating temperatures are identified in **GREEN**

- Promoted MgO-Na₂CO₃ and dolomite sorbents prepared for packed bed testing
- Packed bed tests are ongoing
- Design and preparation of new sorbents is ongoing

Temperature variation due heat of CO₂ sorption in a particle-packed bed


- Pronounced temperature variations shown in such a small particle-packed bed (1/2" OD tube)!
- Efficient heat transfer is important
- > The results affirm present approaches:
 - In situ coupling of endothermic reforming reaction with exothermic CO₂ capture
 - In situ coupling of exothermic coke combustion with endothermic CO_2 desorption

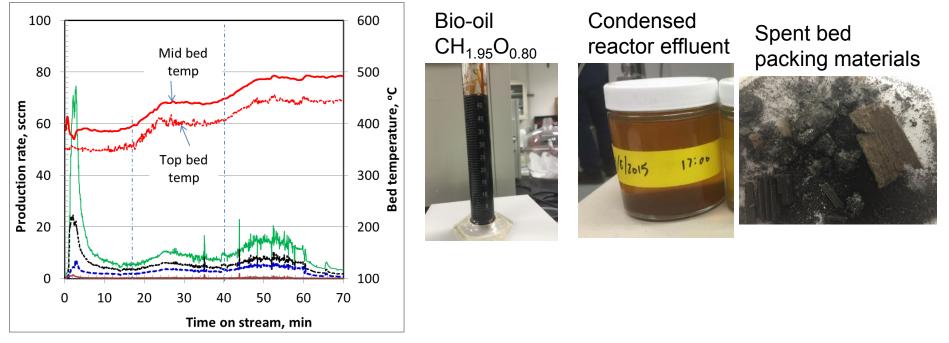
Pacific Northwest

Presence of steam promotes working capacity of a MgO-based sorbent

Adsorption conditions: Regeneration conditions: 390°C, 1 bar, 20% CO₂, GHSV =4,200 1/h

ditions: 450°C, 1 bar, air

- Rapid sorption/desorption kinetics is shown
- Sorbent can be regenerated by either PSA or TSA
- Presence of steam slightly stabilizes the sorbent performance, promising for usage under steam-reforming conditions


Preliminary low-temperature catalytic bio-reforming

Bio-oil feed: NREL 500 Oak - Pyroil NREL TCPDU

Received:

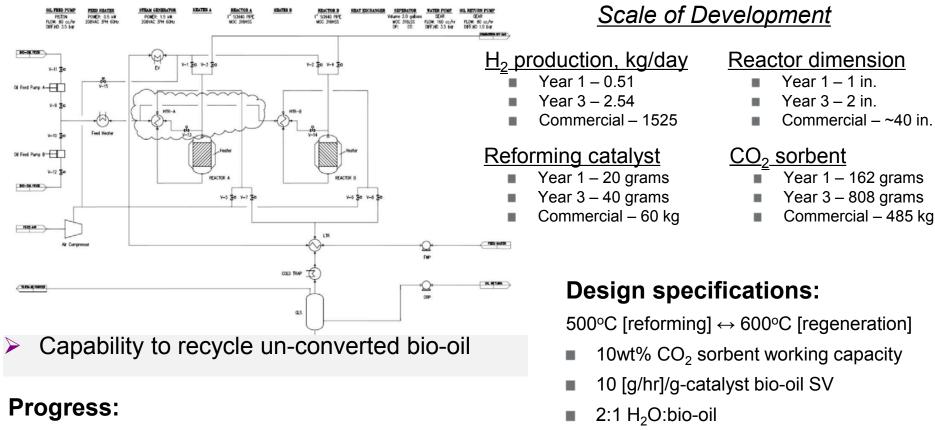
ed: 10/29/10

Composition: 44.94 % C, 7.29 % H, 47.66 % O, 0.01% S, <0.05 % ash Reaction conditions: GHSV =100,000 1/h, atmospheric pressure

- > A metal oxide nano-composite catalyst showed significant reforming activity at 400°C
- Deactivation by coking occurred rapidly and activity could not be restored by raising temperature
- Catalytic performances are drastically affected by bio-oil flow distribution

TiO₂ monolith support prepared and catalyzed for reforming reaction

1.2 Core-drilled 20mm x 120mm monolith (~300cpsi) for 1-inch reactor 1.0 Monolith 0.8 00 integrity and 0.6 porous 2 structures are BET surface area 0.4 maintained at 0.2 high 0.0 calcination ~~1-mm channel 500 550 600 650 700 750 temperature 0.36mm wall thickness Calcination temp, °C 1.2 1.0 Significant amounts of 0.8 the catalyst TiO₂ monolith 0.6 can be channel wall BET surface area 0.4 impregnated with loaded with reforming catalyst uniform Pore volume 0.2 textures 0.0 5 15 20 25 0 10 Catalyst loading, wt%


Pacific Northwest

30

800

Accomplishment & Progress Integrated testing system designed and being built

Process flow diagram finalized for integrated testing unit

- Designs of key equipment are completed
- Vendor quotes are acquired and procurement is ongoing

80%/20% carbon yield to reforming/coke

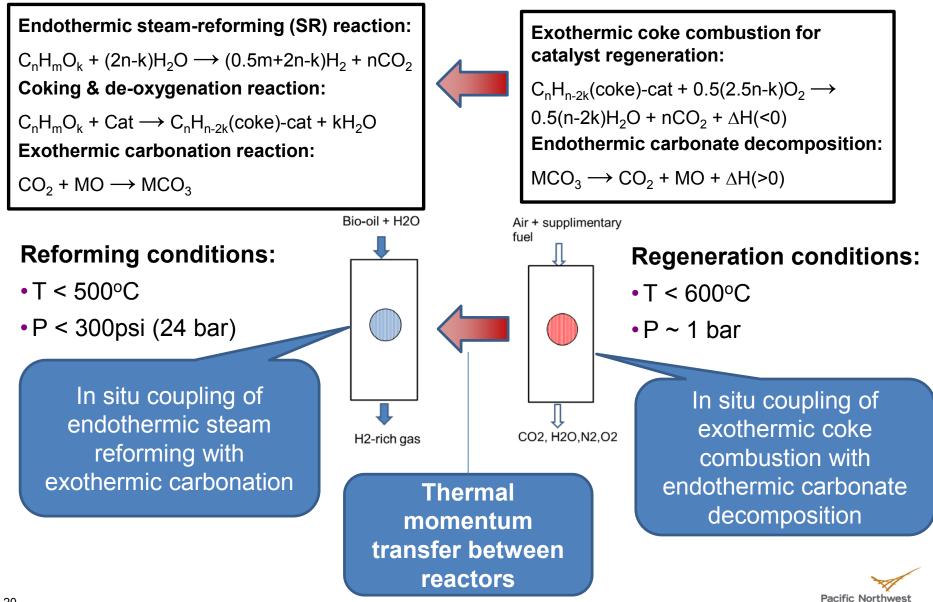
80% single pass conversion

■ 90% CO₂ capture

Remaining barriers and challenges, and proposed future work

Milestone	Challenges	Proposed approach
Low-T, regenerative reforming catalyst	Bio-oil flow distribution	FY15: New designs of distributor and reactor bed package
	Regeneration and stability, and activity enhancement	FY15: More catalyst designs and preparation, more reforming/regeneration tests
In-situ CO ₂ sorbent	Matching of CO ₂ sorption/regeneration conditions with steam-reforming	FY15: Tailoring CO ₂ sorbent properties and more sorption process parametric tests
Monolith reactor integration	Material integration of reforming catalyst and CO_2 sorbent into TiO_2 monolith structures	FY16: Tailoring and understanding of monolith properties as a sorbent and catalyst support
	Synchronization of reforming reaction and CO ₂ capture processes in the monolith structure	FY16: Operation of the integrated reactor testing system and parametric process tests

Summary


Material preparation & characterization	First group of TiO ₂ monoliths prepared	Cormetech
	A few groups of new reforming catalysts prepared and tested, including monolith-supported ones	WSU &PNNL
	Review of recent literature on CO ₂ sorbent and bio-oil reforming completed	PNNL
	Two promising CO ₂ sorbents identified by TGA tests for respective low-T and high-T sorption	PNNL
Adsorption & reaction tests	Single-tube reactor testing capabilities built	PNNL
	Rapid kinetics and initial stability of the low-T CO_2 sorbent in presence of H_2O confirmed by packed bed tests	PNNL
	Two promising low-T reforming catalysts identified by respective model compound and actual bio-oil reforming tests	WSU & PNNL
Process research and development	A provisional patent application was filed "An integrated reactor unit for H ₂ production"	PNNL
	Design of integrated test unit finalized and procurement of major components in progress	Dason Technology

Technical Back-Up slides (optional)

Approach — Swing operation of integrated reactor

Originality of present CO₂ sorbent approach confirmed by literature review

CO2 sorbent materials reported in the literature:

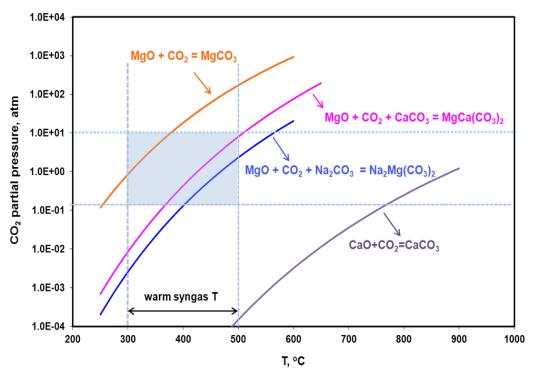
- CaO-based: MgO-CaO, TiO₂-CaO, Li₂CO₃-CaO
- MgO-based: K₂CO₃-MgO, Cs₂CO₃-doped MgO, KNO₃-MgO, alkaline and alkaline earthpromoted MgO
- Other compounds: Na₂Mg(CO₃)₂, Li₈SiO₆ mixed with (K-, Na-carbonates), lithium silicate
- CH₄ steam reforming with in-situ CO₂ capture
- CeZrOx-CaO + Ni/hydrotalcite
- Mg_{1-x}Al _x(OH)₂(CO₃)_x or Lithium zirconate +Rh/Ce_aZr_{1-a}O₂
- commercial K₂CO₃-promoted HTC from SASOL + Ni/alumina

Bio-oil steam reforming with in situ CO₂ capture

- Dolomite + Ni/La₂O₃-Al₂O₃
- CaO-based sorbents typically require regeneration above 700°C, and the sorbent tends to deactivate with cycle.
- A stable CO₂ sorbent with fast kinetics has not been shown yet through sorption/regeneration cycles.

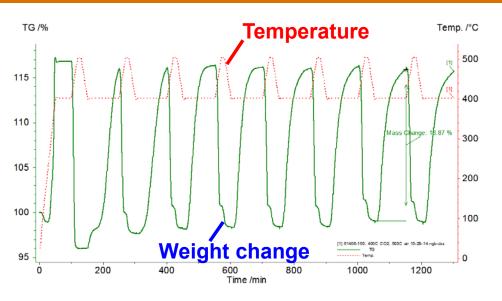
Bio-oil reforming catalyst background studies and preparation

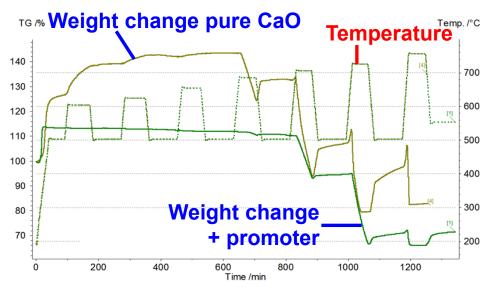
Literature review conducted to understand pros/cons of different catalysts studied, and to address critical needs in this project work


Commercial catalyst	Z417, C11-NK and NREL#20
Ni on different support	Ni/alumina, Ni/La-alumina, Ni/CaAl ₂ O ₄ , Ni/CeO ₂ –ZrO ₂ ; Ni/HZSM-5(Si/Al=25), Ni/CNFs catalyst
Ni (+ additive)	Ni (+ additive)/ Al ₂ O ₃ , NiCu/MgCe/Al mixed oxides
Previous metal	Ru/MgO/Al ₂ O ₃ ,1%Pt/Al ₂ O ₃ , Rh or Ir/CaAl ₂ O ₄
Mixed metal oxide	Ni–Al modified with Mg and Ca 2CaO -7Al ₂ O ₃ doped with Mg, K or Ce

Most catalysts are studied at reaction temperatures > 500°C.

- Catalyst deactivation is common problem. Coke formation is the major cause, more pronounced in the Ni-based catalysts.
- No regeneration and stability of the catalysts have been reported.


Technical Accomplishments – Task 1 thermodynamic analysis of CO₂ sorbent design

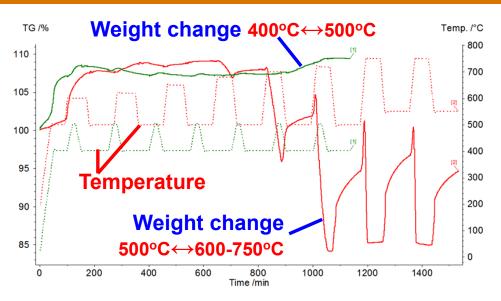


- MgO is in the lower working temperature range for present application
- CaO is in the higher end
- Compounds are likely needed to shift the CO₂/MgO equilibrium toward higher temperature

Technical Accomplishments – Task 1 MgO/Na₂CO₃ (in-house) and CaO sorbent performances

 $\mathsf{MgO} + \mathsf{CO}_2 + \mathsf{Na}_2\mathsf{CO}_3 \leftrightarrow \mathsf{Na}_2\mathsf{Mg}(\mathsf{CO}_3)_2$

A stable sorbent at 400/500°C working/regeneration temp.


 $CaO + CO_2 \leftrightarrow CaCO_3$

 $500^{\circ}C \leftrightarrow 600-750^{\circ}C$

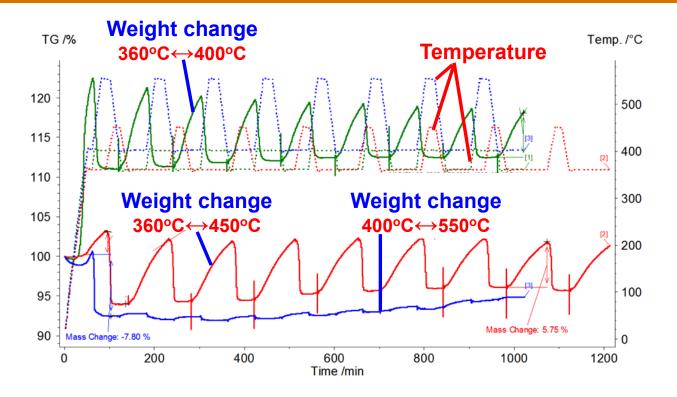
- >700°C regen required
- Addition of carbonates
 - decreased working capacity
 - did *not* lower regeneration temperature

Technical Accomplishments – Task 1 *Performances of dolomite-derived* CO₂ *sorbent at high T*

TG /% Temp. /°C Weight change Temperature r 800 130 400°C↔500°C 700 120 600 110 500 100 400 300 90 Weight change 200 80 500°C↔600-750°C 100 70 nge: -25.14 % 0 200 0 400 600 800 1000 1200 1400 Time /min

Dolomite-derived sorbent

 $MgO + CaO + 2CO_2 \leftrightarrow MgCa(CO_3)_2$

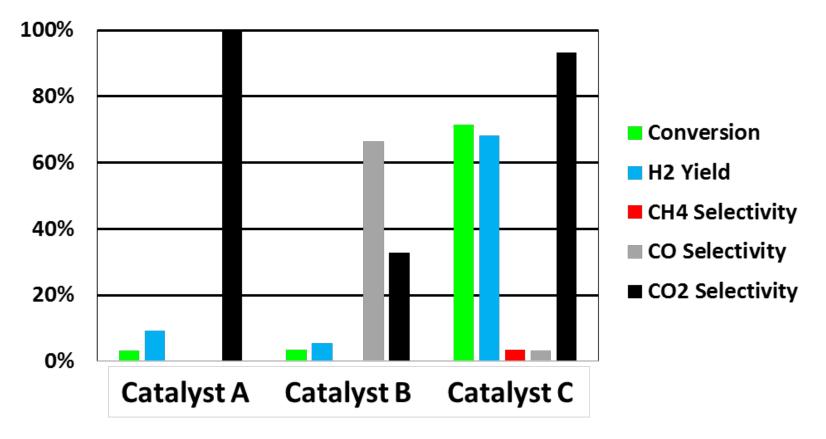

Only CaO component works at high temperature !

Dolomite-derived sorbent with addition of promoter

- did not lower regeneration temperature
- *Increased* working capacity

Technical Accomplishments – Task 1 *Performances of dolomite-derived* CO₂ *sorbent at low T*

Dolomite-derived sorbent with promoter at lower temperatures


 $MgO + CaO + 2CO_2 \leftrightarrow MgCa(CO_3)_2$

Only MgO component works at low temperatures!

Promising reforming catalysts identified from model reaction tests

- Identified catalyst composition which gives about 70% yield to H₂ using phenol as a model compound for pyrolysis oil
- Catalysts are stable for >30 mins and no activation is required.

Reaction Conditions: T = 500 °C, S/C=10, P_{Phoh}= 0.81 mol%, SV= 3000 hr⁻¹

