

Reformer-Electrolyzer-Purifier (REP) for Production of Hydrogen

2015 AMR (Annual Merit Review), Washington DC

P.I. / Presenter -- Fred Jahnke FuelCell Energy, Inc. June 11, 2015

Project ID #: PD112

Ultra-Clean, Efficient, Reliable Power

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: October 2014
- End: September 2016

Budget

- Total Budget: \$1,250,509
 - Total Recipient Share: \$254,215
 - Total Federal Share: \$996,294

Barriers

Barriers to hydrogen infrastructure:

- High cost
 - High capital costs for distributed production
 - High transportation costs for central units
- Limited areas of production
 - Emissions limit potential sites
- Scalability of production to local demand
- Production efficiency

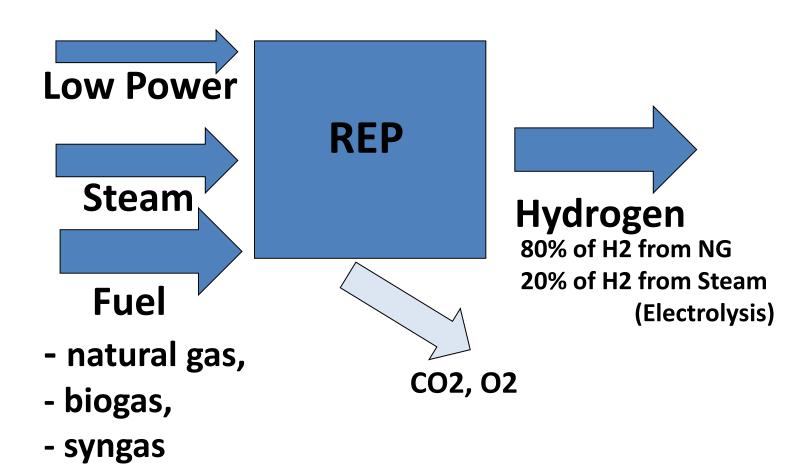
Funded Partners

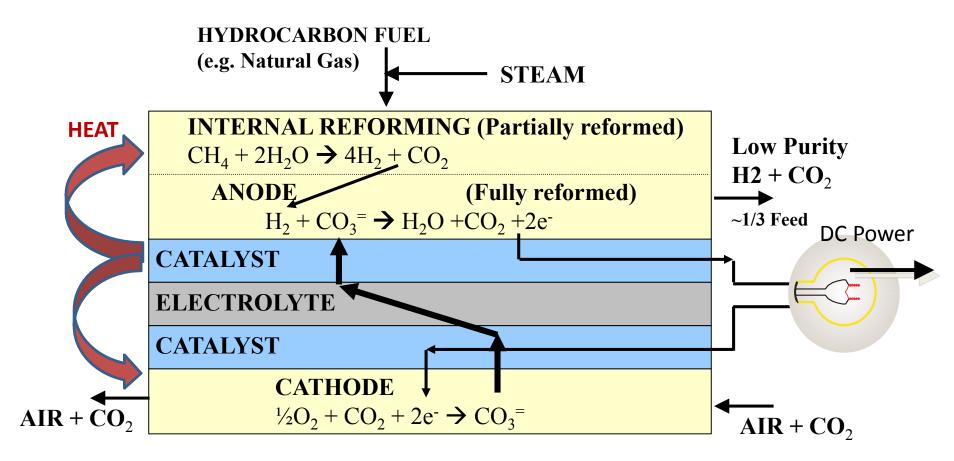
• UC Irvine National Fuel Cell Center

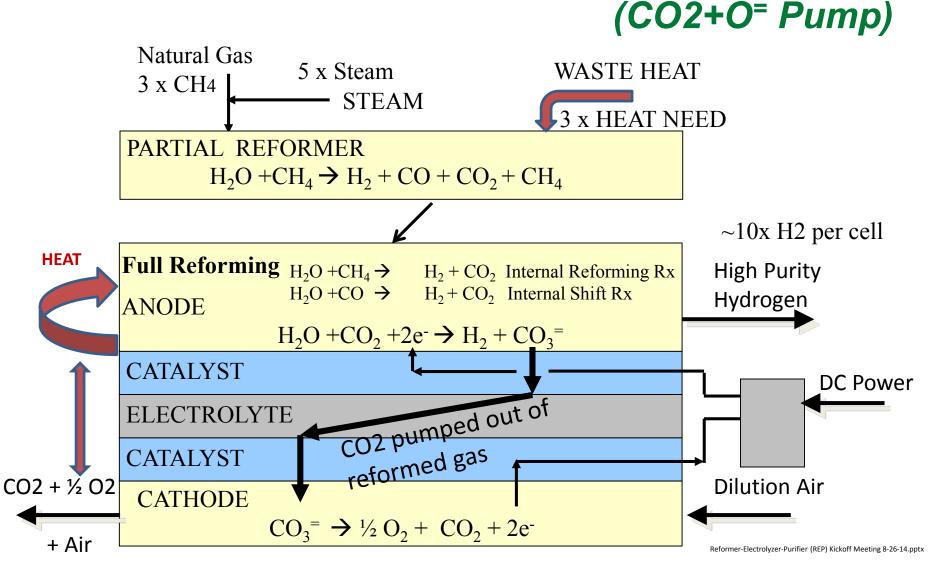
Impact of REP Technology

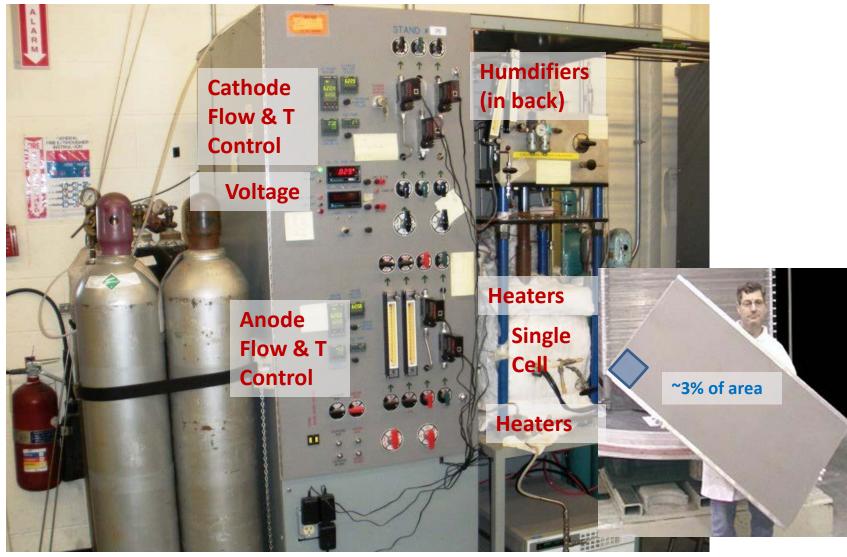
- 1. Lower cost hydrogen
 - Can meet DOE Target Long term H2 less than 2 \$/kg
- 2. Low carbon emissions
 - Can meet DOE Target CO2 emissions less than 5,000 g/gge
 - System utilizes waste heat
 - 100% conversion of CH4 with recycle
 - Low power high temperature electrolysis removes CO2 and provides 25% additional H2
 - 100% H2 recovery with recycle
- 3. <u>~Zero NOx, CO, SOx emissions when integrated with DFC® fuel cell</u>
- 4. System fully scalable
 - Number of cells determines capacity
 - Home fueler (2kg/d) to large scale 16,000 kg/d
- 5. Manufacturing facilities already in place and operating
 - Will use same components currently being manufactured for DFC[®] fuel cells

- Use existing FuelCell Energy MCFC (molten carbonate fuel cell) components
- Operate MCFC in electrolyzer mode as CO2 pump
 - Phase 1 single cell testing and model development
 Long term testing / life determination
 - Phase 2 Multi cell stack testing and thermal management
 - Optimization of configuration options using H2A model (UCI support) and commercialization plan
- Integrate input from potential users and stakeholders
 - Integration with DFC[®] operating fuel cell can provide heat and feed preparation needed by REP
 - Other sources of waste heat
 - H2 users, low and high pressure


Task	Description	Verification
Single Cell Parameter - Testing	Testing unit is started.	Testing Started. Unit hot and initial preliminary data available.
Single Cell - Base Case	Single cell unit tested under base case operating conditions	Base case cell operations at 130 mA/cm2 with feed gas composition corresponding to a 1130° F reforming temperature will increase 30% in the H2 production and a 20% in H2 purity compared to no electrolysis.
Reconfirm attractive economics	System optimized and the attractive economics confirmed.	Updated HMBs issued to UCI. Validate economics indicate a H2 production cost of 1.4 to 2.2 \$/kg H2.
Go/No-Go Decision	Test results meet targets given in SOPO	Single cell test stand provides data which confirms passing of go/no go conditions described in SOPO.


Task	Description	Verification
Build large scale REP	The large scale unit construction started.	PO for >85% of parts issued.
U	Single Cell Long term testing	Tests show < 10%/yr performance degradation.
Commercial scale REP tests	The commercial scale testing started.	Unit operating and Initial test results issued. Demonstrate 100 kg H2/day production rate.
and economics	HMB's and economics updated based on test results.	Commercial test results completed. Updated HMB's issued to UCI
Commercial scale REP tests	REP unit	In-house test stand confirms CO2 emissions lowered 40%, production of 100 kg H2/day, and degradation rate less than 1.25%/1000 hr. Draft Final Report Issued for comments. Hydrogen production cost of \$2/kg H2,





10 x H2 per cell generated, external heat source is needed

REP Single Cell Test Facility

Future REP Stack Test Facility

2000 kg/d

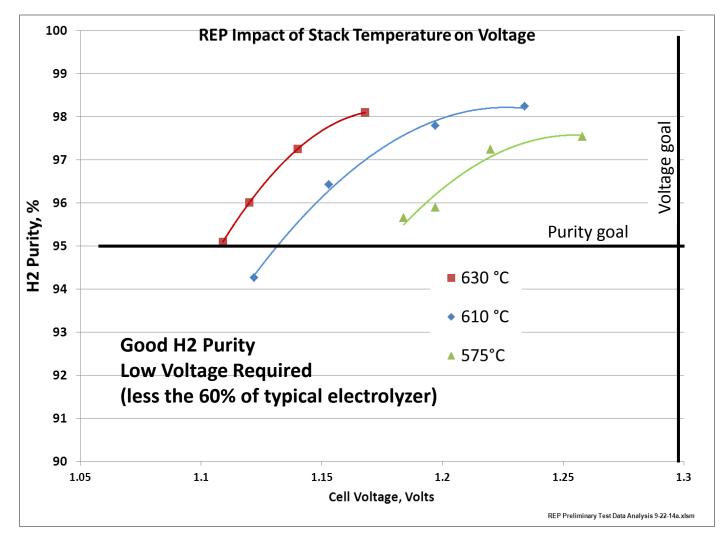
100 kg/d

Phase 1

1. Single Cell Performance Determined

- a) Voltage vs Purity
- b) Power consumption
- c) Sweep Gas
- d) Detailed performance model

2. Confirmed life of fuel cell (continuing)


- a) Long term operation of cell 1500 hrs to date
- b) Low Degradation rate so far

3. Defined system options (continuing)

- a) Integrated with DFC
- b) Standalone system
- c) Alternate feedstocks (gasifier, ADG, waste gas)

REP Single Cell Performance

Low power consumption confirmed (<1.2 v/cell)

REP Voltage Model Developed

RFP Sir gle Cell HMB Summary 10-1-14 xlsm

E =	$E = E_{T}^{o} + \frac{RT}{2F} \ln \frac{\chi_{H_{2}} \chi_{O_{2}}^{1/2} \chi_{CO_{2}(c)}}{\chi_{H_{2}O} \chi_{CO_{2}(a)}} + \frac{RT}{4F} \ln P$						
		Case	<u>Model</u> Voltage	<u>Measured</u> Voltage	<u>Voltage</u> <u>Error</u>		
		33.5A	1,159	1,170	0.9%		
	33.5A Lov	Air Flow	1,163	1,170	0.5%		
		37A	1,166	1,173	0.6%		
	3	87A Low T	1,209	1,220	0.9%		
	3	7A High T	1,149	1,140	-0.8%		
		40A	1,216	1,201	-1.3%		
	40A	N2 Sweep	1,234	1,234	0.0%		
	40A No	Cath Flow	1,271	1,333	4.3%		

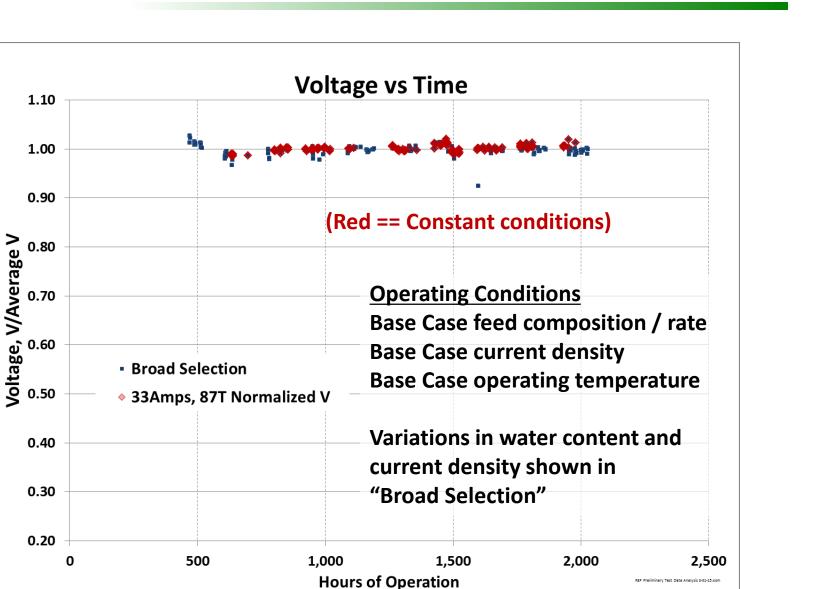
1/0

V_1_	1142.6		
E	1028.8		
ηcathact_1_	-55.9		
ηanact_1_	-28.9		
ηconc_1_	-16.1		
i * Zir	-40.0		
ηnernst	27.1		
E_1_	1.0287339		
EoT_1_	1.0287607		
F_1_	96485.3		
i_1_	-1582.1363		
iL_1_	8000		
iLk_1_			
iLko2c_1_	11257.723		
iLkco2c_1_	3958.1632		
iLkh2oa_1_	N/A		
iLkh2a_1_	8837.9538		
iLkco2a_1_	N/A		
ka_1_	3.10E-07		
kc_1_	3.06E-09		
KII_I_	2.15E-06		
n_1_	2		
nk_1_			
nko2c_1_	0.6		
nkco2c_1_	0.4		
nkh2a_1_	1		
Pc_1_	1.0078587		
Qa_1_	19.1		
Qc_1_	61.67		
Qir_1_	18.11		
R_1_	0.0083145		
Tc_1_	883.33333		
Za_1_	1.826E-05		
Zc_1_	3.532E-05		
Zir_1_	2.531E-05		
AK_1_			
Xo2c_1_	0.2208908		
Xco2c_1_	0.0327162		
Xh2oa_1_	0.3637636		
Xh2a_1_	0.5523721		
Xco2a_1_	0.0474421		
Xo2cref_1_	0.125		
Xco2cref_1_	0.19		
Xh2oaref_1_	0		
Xh2aref_1_	0.5		
Xco2aref_1_	0		
DelGT_1_	-198520.57		
nact_1_	-0.0558881		
ηact_1_	-0.0288915		
nconc_1_	-0.0161431		
nconco2c_1_	0.06575		
nconcco2c_1_	0.3362685		
ηconch2oa_1_	0 [°]		
ηconch2a_1_	0.0221303		
nconcco2a_1_	0 [°]		
√k_1_			
vko2c_1_	0.5		
vkco2c_1_	1		
vkh2oa_1_	0		
vkh2a_1_	1		
vkco2a_1_	0		
nnernst	27.08542		
Za_1_	182.6		
Zc_1_	353.2		

Sophisticated Model developed for REP (adapted from MCFC fuel cell model with minor adjustments).

Error = (Meas V / Calc V) -1

0.07%


1.01%

Model closely matches test data.

Average Error Stnd Deviation

Model allows optimization of system operation and accurate heat and material balances.

Stable Operation

Collaborations

Collaborator – UC Irvine NFCRC

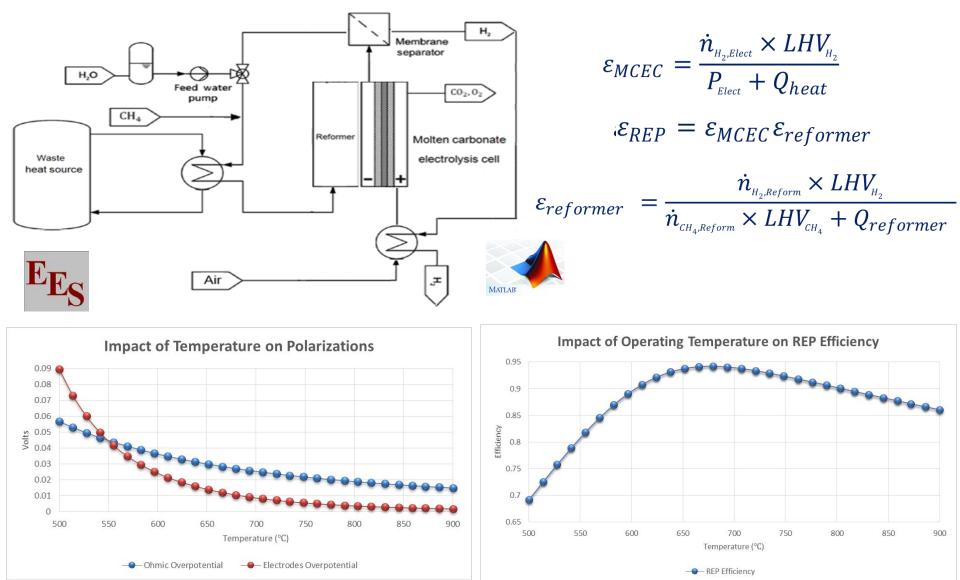
1. Confirm economics of system

- a) Develop optimization model
- b) Configuration options
- c) Operating conditions
- d) Sensitivity to prices
- e) Waste heat impact
- 2. Large cell modeling
 - a) Temperature profile

3. Sources of waste heat

- a) Level of heat
- b) System with heat available

4. Alternate fuel sources

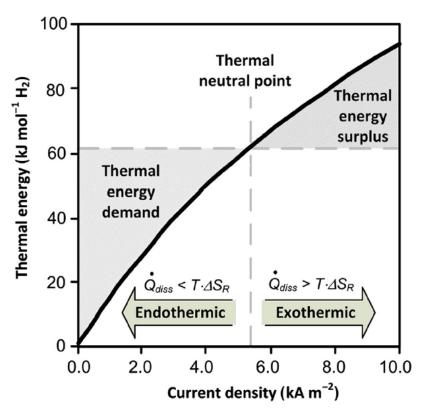

- a) ADG
- b) Gasification
- c) Exhaust gas

5. Commercialization Plan / Market analysis

- a) Demonstration site
- b) Near term markets
- c) Long term

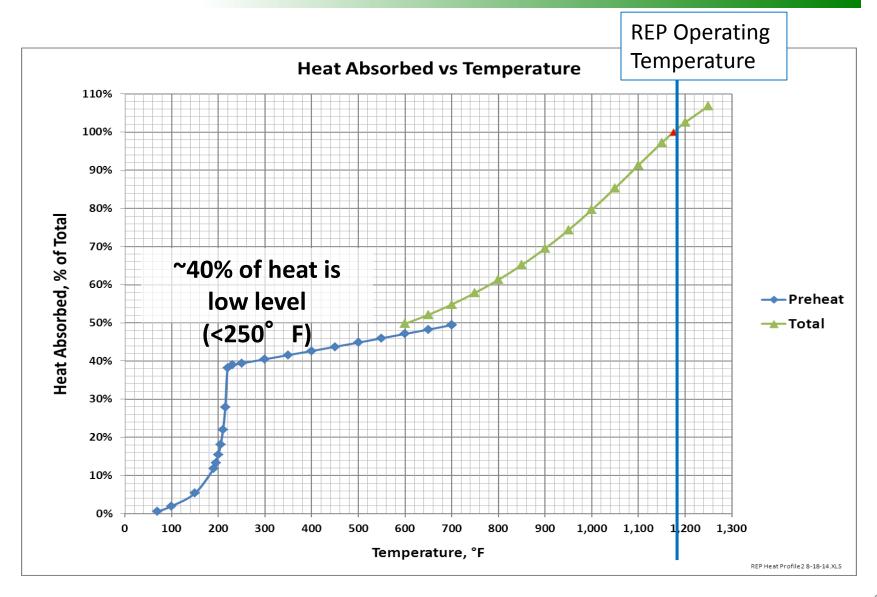
FuelCellEnergy Model for Economics & Optimization

Detailed REP cycle & stack models have been developed

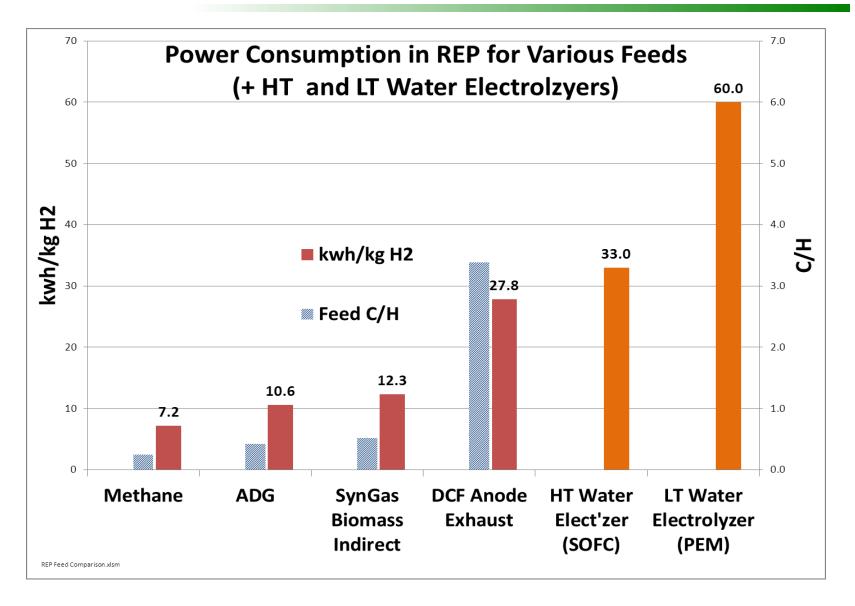


FuelCell Energy Ultra-Clean, Efficient, Reliable Power Model for Economics & Optimization

Use model to evaluate external sources of heat, e.g.,


- DFC[®]
- Gas turbine
- Engine
- Low pressure steam
- Solar w/ electrical backup
- Off-Peak power
- Nuclear
- Heat treating / Sintering
- Glass manufacturing
- Furnaces
- Steel Mills
- Boilers

Look for synergistic hydrogen use opportunities Evaluate parameters: (1) temperature, (2) hydrogen use, (3) syngas availability, (4) steam availability, (5) other



Heat Level Required

Currently updating using recent cell results.

H2A REP Results	Integrated	1826 kg/d	Stand alone	
Cost Component	Cost Contribution (\$/kg)	Percentage of H2 Cost	Cost Contribution (\$/kg)	Percentage of H2 Cost
Capital Costs	\$0.34	24.3%	\$0.93	42.6%
Decommissioning Costs	\$0.01	0.9%	\$0.04	1.6%
Fixed O&M	\$0.12	8.6%	\$0.21	9.5%
Feedstock Costs	\$0.91	66.0%	\$1.01	46.2%
Other Dev Meterial Costs	¢0.00	0.0%	¢0.00	0.0%
Other Raw Material Costs	\$0.00		\$0.00	0.0%
Byproduct Credits	\$0.00	0.0%	\$0.00	0.0%
Other Variable Costs				
(including utilities)	\$0.00	0.3%	\$0.00	0.2%
Total	\$1.38		\$2.18	

Adding polisher in future

- 1. Longer term stability data
- 2. Parametric analysis using H2A model
- 3. Post test analysis of single cell
- Multi-cell stack design based on single cell data and H2A Analysis
- 5. Stack test plan
- 6. Stack fabrication
- 7. Test facility readiness for multi-cell stack testing
- 8. Validation testing of the stack
- Update H2A model analysis based on stack test data
 10.Identify potential field site for demonstration
- 11.Presentation to stakeholders (HPTT, California CEC)

- 1. Identified stakeholders from HPTT and California Hydrogen Business Council and UCI meetings
- 2. Initiated development of users workshop in California (UCI leading)
- 3. Presentation to DOE/HPTT in August and March
- 4. Discussions with NREL H2 production group at ESIF
- 5. Patent application filed 2014

- 1. Single Cell performance test results excellent remain similar to expected performance.
- 2. Accurate model REP developed similar to detailed fuel cell performance model.
- 3. Life of REP cell good to date. Expect good cell life
- 4. Simulation models (ChemCad) developed to confirm high efficiency, low emissions and potential for low cost
- 5. Optimizing system to determine best economic cases
 - a) Integrated with DFC
 - b) Standalone system
 - c) Alternate feedstocks (gasifier, ADG, waste gas)
- 6. System has great potential for alternate uses such as renewable energy storage, chemicals production, or CO2 capture.