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Overview

• Project start date: 10/1/14
• Project end date: 9/30/17
• Total project budget: $3M

o Total recipient share: $0
o Total federal share: $3M
o Total DOE funds spent*: 

$0.5M**

• Barriers addressed
o AE. Materials Efficiency –Bulk 

and interface.
o AF. Materials Durability – Bulk 

and interface
o AG. Integrated Device 

Configurations

Timeline and Budget Barriers

• Interactions/collaborations
o University of Nevada Las Vegas 
o Lawrence Livermore National Lab
o University of Hawaii
o Los Alamos National Laboratory
o Stanford University 
o Colorado School of Mines
o University of Colorado-Boulder
o University of Louisville
o University of Oregon
o Denmark Technical University

Partners

* As of 3/31/15
** Includes UNLV, LLNL, LANL, UH 
support
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Relevance
Objectives
• Long-Term: Develop highly-efficient, durable material that can operate under 

10-15x (or higher) solar concentration and generate renewable hydrogen for 
<$2/kg from photoelectrochemical (PEC) water splitting 

• Current year:
o Push boundaries on achievable semiconductor photoelectrochemical 

solar-to-hydrogen (STH) efficiencies 
o Continue development of stabilizing surface modifications viable at high 

current densities
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Relevance

Technoeconomic analysis for a 
type 4 (10x concentrator) PEC reactor 

Pinaud et al. Energy Environ. Sci. 6, 1983 (2013) 

DOE EERE Multi-Year Research, Development, and Demonstration Plan

• Primary focus is on efficiency, the largest 
lever to reduce H2 costs according to 
technoeconomic analysis

• Scalability is primary selection criterion, 
more important than earth abundance

• Absorber cost and durability (lifetime) 
issues can be addressed through 
engineering

Project Guiding Principles
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Approach

The US DOE PEC Working Group approach towards efficient 
and durable solar H2 production

NREL-led Project Focus: 
o Extend durability of 

highly efficient materials
o Ensure efficiencies are 

not compromised by 
durability treatments

o Investigate new 
materials that can 
achieve ultra-high future 
efficiency goals  

EERE: Applied R&D to develop cost-effective large-scale systems
NSF: Use-inspired basic research (theory, synthesis, characterization)
Emphasis on collaboration across disciplines and institutions
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Approach – Project Overview

• Tandem absorbers
o Task 1: Demonstrating 

attainable efficiencies
– III-Vs by MOCVD (NREL)

o Task 2: higher-risk, lower-
cost approaches

– InxGa1-xN tandems (LANL)
– III-V-N on Si tandems 

(NREL)
– Coupled photoanode-

photocathode systems 
(Hawaii, NREL)

• Surface modifications – spectroscopy (UNLV) and modeling (LLNL)
o Ion-implantation & flash sputtering (NREL)
o Thin coatings by atomic layer deposition (NREL, CU)
o Molybdenum disulfide coatings (Stanford)

• Benchmarking, prototyping, & demonstration
o Photoreactor design and outdoor device testing (NREL, JCAP-Solar Fuel Hub)

Maximize efficiency first then focus on durability via surface modifications, 
investigate lower-cost synthesis once material has been identified
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Approach: High Efficiency via Tandems
Döscher et al. Energy Environ. Sci., 7 2956 (2014) 

• Exceeding 20% solar-to-hydrogen (STH) feasible
• Reactors with low water penetration for 25% STH
• GaInP2/GaAs (1.8 eV, 1.4 eV) not optimal

• Traditional MOCVD requires lattice 
matching from substrate through all epi-
layers to maintain high material quality 

• Metamorphic growth removes “vertical-
only” constraint by incorporating a 
transparent, step-graded layer to allow 
non-lattice matched absorbers

• Inverted Metamorphic Multijunction
(IMM) growth: top junction grown first, 
device layers removed from substrate, 
could potentially be re-used 

•
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Approach: Surface Validation Team
Understanding and remedying semiconductor photocorrosion at PEC interfaces is a complex 
task that has benefitted significantly from a collaborative approach which teams experts with 
unique capabilities and resources

PEC
NREL

Theory
LLNL

Spectroscopy
UNLV

• Heske group at UNLV
o XPS, XAS, XES, IPES, UPS,

AFM
– Some measurements at

Advanced Light Source
(ALS)

o Snapshots of surface pre-,
intermediate, post-exposure

o Identify common features of
and conditions that lead to
corrosion

o Characterize stabilized
surfaces

- Show where we are in 
parameter space wrt. 
amounts of N & PtRu

• Ogitsu group at LLNL
o Develop theoretical tool

chest for modeling PEC
systems

o Simulate x-ray spectra to
correlate UNLV experimental
results with surface/near
surface compositions

o Model III-V surfaces to
uncover the key mechanisms
of surface corrosion
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• Integrating experiment, computation, and theory
• Making digital data accessible
• Creating a world-class materials workforce
• Leading a culture shift in materials research

Innovative materials discovery and development  for faster product 
development.  Key elements include:

Advanced Materials Manufacturing (AMM) / Materials Genome initiative (MGI) 

Correlate Spectroscopy with Theory on Nitrided p-GaInP2
System: Establish Base for Predictive Capabilities
• Based on observation that nitridation led to stabilized

GaInP2 surface: Model the local nitrogen environment to
understand measured spectra

• Theoretical N2
+ implanted GaInP2 nitrogen K-edge XES

spectrum by LLNL constructed from various types of
nitrogen impurity states as well as the experimental XES
measured by UNLV group at LBNL synchrotron

MGI Elements Incorporated: theory, modeling, experimental
 Encourage and enable integrated R&D
 Enable creation of accurate, reliable simulations
 Support creation of accessible materials data repository (sharepoint)
 Provide opportunities for integrated research experiences

Surface Validation: Photocorrosion of III-V materials with Heske (UNLV), Ogitsu (LLNL)
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• Re-use substrate
o Epitaxial lift-off

o Multilayer epitaxial assemblies

o Spalling

o Laser lift-off

• Alternative substrate
o III-V on Si

o Metal foil

Approach: Pathways to III-V Semiconductor Cost 
Reductions

Epitaxial lift-off graphic from
NREL report PR-6A00-60126

• Optical concentration
o 10x-100x uses less absorber

o Close-spaced vapor transport

o Hydride vapor phase epitaxy

Phys. Status Solidi 202, 501–508 (2005)

Appl. Phys. Lett. 100, 053901 (2012)

MRS Comm. 1–5 (2015). doi:10.1557/mrc.2015.2

ACS Appl. Mater. Interfaces 4, 69–73 (2012)

Appl. Phys. Lett. 102, (2013)

J. Appl. Phys. 113, 174903 (2013)
Appl. Phys. Lett. 105, 092104 (2014)

NREL report PR-6A00-60126

NREL report PR-6A00-60126

Semicond. Sci. Technol. 17, 769–777 (2002)

J. Appl. Phys. 112, 123102 (2012)

• Alternative precursors

- Close-space vapor transport

- Ion beam assisted deposition

This is a very active area of research that includes commercial cell manufacturers and funding support from ARPA-E.
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Inverted growth – light-facing 
wider bandgap grown first 
- Top junction lattice-matched to 

substrate
- Device transferred to handle 

material and substrate removed
- Potential substrate re-use
- Reflective back contact

p-GaInP2 (Top)
Tunnel junction

GaAs substrate
(removed)

p/n GaInAs
Bottom Junction

Si handle (Bottom)

Gold back contact
Epoxy

4-5 μm
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Si wafer handle

Epoxy

Au back 
contact

III-V tandem
Surface of GaInP2

James Young

Transparent Graded 
Buffer

Progress: Demonstration of IMM for PEC
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Progress: IMM Devices for Increased Utilization of 
Solar Spectrum – On the Path to Higher Efficiency

Direct 
solar 
flux 
(scaled)

1.8 eV 
GaInP2 Top

1.4 eV 
GaAs 

Bottom

1.2 eV 
InGaAs 
Bottom

Increasing bandgap-limited current
• Absorber junctions in series:

voltages add, current limited by
lower value (current matching)

• Lowered bottom junction increases
total photon flux but lowers voltage

GaInP2
Top

InGaAs
Bottom

Ideal case

Actual case
Integrated IPCE

Reflection limit

James Young

Two-elec. I-V
3M H2SO4
AM 1.5G

Increased device current
Buried junction to improve voltage
Anti-reflection to smash world-record

Buried junction
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Progress: Met 400-hour Milestone – 468 Hours of 
Durability with N2

+/PtRu
Fouling of the electrode was minimized by changing the electrolyte every weekday

• p-GaAs with N2
+ ion 

bombardment and PtRu
sputtering

• Operated at 15mA/cm2 in 
3M H2SO4 with 1mM 
Triton X-100

• Some fouling still 
occurred

• Cleaning in methanol 
and nitric acid restored 
light-limited photocurrent 
to original value

• Photocurrent onset 
potential was degraded

• Catalyst 
deactivation?

• Catalysts loss?
Over 150 hrs durability with MoS2
Jaramillo (Stanford) poster PD119
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Ru loading on GaAs (nm)

Nitridation PtRu Sputtering
Treatment

p+-GaAs 
Subs.

Ru (nm)

p-GaInP2
Epi.

Ru (nm)

p+-GaAs 
Subs.

Pt (nm)

p-GaInP2
Epi.

Pt (nm)

Nitridation 0.22
±0.02 0.25 ±0.07 0.18 

±0.02
0.19 
±0.06

Sputtering 0.28
±0.04 0.17 ±0.01 0.19 

±0.02
0.13 
±0.01

Full 1.59 
±0.21 0.44 ±0.07 1.65 ±0.2 0.33

±0.05

Progress: Mapping Pt & Ru Distribution from 
N2

+/PtRu Surface Modification
• Simultaneously treated GaAs substrate and 

GaInP2 epilayers
• Digested entire GaAs wafer, portions of 

GaInP2 in aqua regia and Pt, Ru determined 
by ICP-MS

• Reported in thickness (nm) of compact film
• Results: 

o Nitridation step significant source of PtRu
o Fairly uniform spatial distribution
o Full treatment on GaAs much greater than 

sum of parts 

N2
+ implantation: 0.7 mTorr N2, 12 

mA beam, 9 minutes @ 15 rpm

PtRu sputtering: 10 mTorr Ar, 20 
W DC, 2 rotations @ 15 rpm
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Progress: Work with Surface Validation Partner 
(UNLV) to Understand PtRu Loading Now vs. Then

Original “magic” sample:
(Old ion gun, no sputtering)

First repetition of protection:
(Old ion gun, PtRu sputtering)

New “standard” treatment:
(New ion gun, PtRu sputtering)

New “standard” treatment:
(New ion gun, PtRu sputtering)

Approximate % of 
treated GaInP2samples 
with desired durability

30%

30%

90%

90%

• X-ray photoelectron spectroscopy (XPS) by Monika Blum at UNLV reveals 
significantly (order of magnitude) greater noble metal loading on newer samples

• “Magic” samples had more N (by XES) and less PtRu than current parameter space
• Can’t achieve low PtRu and high N with current set-up
• Future: new non-air-exposed samples to UNLV to evaluate N loading & distribution

Not where we want to be in terms of 
N and PtRu loading for max durability 
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Progress: Reactor Design
• Initial design had optical concentration

from curved front window and large
pathlength through electrolyte

• Electrolyte absorbs large fraction of
useable infrared photons

• New design for lab characterization and
demonstration that reduces electrolyte
pathlength from 2 cm to 4 mm

New 
window 
plane

Previous 
window 
plane

Sample 
plane
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Accomplishments and Progress:
Responses to Previous Year Reviewers’ Comments

• “It is unclear what impact lifetime has on cost projections.  A tornado 
plot would help”
o Response: We have included a tornado plot for a type 4 (concentrator) 

PEC reactor that shows the impact of lifetime on hydrogen cost 
projections on slide 4.

• “The singular weakness of this project is the disconnect with the 
fabrication team for III-V material.  It appears the material is produced 
with a foundry-type relationship. It would be better served if the 
material fabrication was a more integral part of the project, with shared 
ownership in the success.”
o Response: We have significantly strengthened our interaction with the III-

V group in several ways.  We wrote in dedicated, direct funding for 
synthesis in the FOA proposal, we share a postdoc (Henning Döscher) 
that has expertise in PEC and III-V synthesis that designs and submits 
run recipes with our input, and we have regular meetings with the III-V 
group.  The enhanced confederation has already borne fruit: the co-
inventors on our provisional patent application on IMM III-Vs for 
photoelectrolysis is a combination of PEC and III-V group members.
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Collaborations
• Partners (extensive collaboration 

with all)
o University of Nevada Las Vegas

– Partner in surface validation project 
o Lawrence Livermore National 

Laboratory
– Partner in surface validation project

o University of Hawaii (PD116)
– Gaillard group – Partner on dual 

photoelectrode approach; sample 
exchange and validation

o Los Alamos National Laboratory
– Mark Hoffbauer – InGaN samples

o Stanford University (PD119)
– Jaramillo group – Key partner in 

MoS2 for stabilization efforts 
o Technische Universität

Ilmenau, (Germany)
- Henning Döscher, Marie Curie 

fellow, is a member of our PEC 
group and NREL’s III-V group 

o Technical University of Denmark

– Ib Chorkendorf – DTU hosts one of 
our students, sample exchange

o Colorado School of Mines
– Graduate, postdoc and assistant 

professor research associates; 
electron microscopy and XPS user 
facilities; sample exchange

o University of Colorado-Boulder
– Two NSF-graduate research fellow 

associates under Steve George and 
Art Nozik are part of our group

o University of Louisville
– Sunkara group – novel III-Vs 

(GaAsxSb1-x)
– Joint characterizations/publication

o University of Oregon
– Boettcher group – Student 

exchange, joint III-V-N PEC 
characterizations

o Helmholtz-Zentrum, Berlin 
(Germany)

- Roel Van de Krol – We host student 
studying transparent OER catalysts
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Remaining Challenges and Barriers
• Efficiency:

o Push solar-to-hydrogen efficiency from 12% to beyond 20% for 
meeting ultimate DOE targets

• Durability:
o Extend our 0.2 year durability to 2 years in the short-term and 10 

years long-term
o More realistic real-world durability assessments
o Identification and control of non-obvious but stability-relevant 

process parameters

• Semiconductor costs:
o Reduce synthesis costs by factor of 10 compared to current cost 

of small-batch III-V materials

• System testing:
o Identify promising photoreactor designs and components

– Window/body material, sealant/epoxy, membrane, counter electrode 
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Future Work– Towards Economical Hydrogen

• Efficiency
o Demonstrate >15% STH efficiency at short circuit for at least 1 hour 

(milestone)
o Push efficiency by testing lower bandgap configurations that sacrifice 

voltage to achieve higher currents (efficiencies)

• Durability
o Demonstrate 875 hours of durability at current density equivalent to 15% 

STH under 1 sun using three surface passivation approaches; work with 
surface validation team to understand mechanism of protection

• Semiconductor Cost
o Simulate photoreactor performance with higher concentration using 

multi-physics modeling to evaluate what levels are practically achievable
o Request samples for PEC characterization from others developing 

innovative III-V synthesis routes being developed by other DOE 
programs (SunShot, arpa-e)

– Epitaxial lift-off, spalling, HVPE, CSVT

• Photoreactor Prototyping
o Design and build photoreactors with low optical concentration and low 

electrolyte penetration depth for on-sun measurements on a solar 
tracker.

In order to achieve the EERE plant-gate, untaxed cost targets of $1-2/kg H2 (1kg H2 = 
1gge) requires a PEC system that has 25% solar-to-hydrogen (STH) efficiency, a 
semiconductor cost around $150/m2, and 10 years of stability.
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Project Summary
Spearheading research in high-efficiency materials in order to 
meet DOE metrics and objectives for solar-hydrogen generation

Focus on high-efficiency III-V crystalline semiconductor systems, 
an NREL core competency: investigation of new materials and 
configurations as well as stabilization of GaInP2 surface 

Developed IMM III-V devices capable of accessing highest 
possible STH efficiencies, continued optimization of surface 
treatment conditions and PtRu quantification; GaAs durability –
468 hours of stability @ 15 mA/cm2 (improvement on previous 
315 hours @ 15 mA/cm2); began collaborative effort with 
Stanford on MoS2 protection of III-Vs; modeled absorption of 
sunlight by water and influence on attainable STH efficiencies –
published manuscript and designed new cells based on results; 
along with UNLV made progress in understanding history of PtRu
on GaInP2

Several ongoing, active collaborations with synthesis, modeling, 
and characterization groups

Push STH efficiency limits with IMM III-Vs; evaluate III-V-N/Si 
tandems for lower cost, higher stability alternative; examine 
stacked mechanical (dual electrode) tandems with Hawaii; push 
three surface passivation approaches (N2

+/PtRu, MoS2, ALD 
TiO2) to achieve over 875 h durability; design and fabricate 
concentrator cells and commence regular outdoor testing 

Relevance:

Approach:

Technical 
Accomplishments:

Collaborations:

Proposed Future 
Work:
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Technology Transfer Activities

• Non-provisional patent filed on nitridation/sputtering 
surface protection (May 2014)

Stable photoelectrode surfaces and methods 
Publication number:  US 20140332374 A1
ABSTRACT
Disclosed herein are methods of treating a semiconductor surface by nitridation and deposition of a 
ruthenium alloy. Also disclosed are semiconductors treated with these methods, their incorporation into 
photoelectrochemical cells, and their use in photoelectrochemical water splitting.

• Provisional patent filed on using inverted 
metamorphic multi-junction III-Vs to achieve 
maximum attainable STH efficiency
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Cost modeling projections for high-volume production of dual junction GaInP2/GaAs PV on GaAs substrates using epitaxial lift-off 
(ELO) technology for substrate re-use. To get PEC material estimates in $/m2, $/W is multiplied by 350W/m2 (the efficiency). 
Modeling performed by Mike Woodhouse of NREL’s Strategic Analysis group, with funding provided by the DOE SunShot Initiative, “A 
Manufacturing Cost Analysis Relevant to Single- and Dual-Junction Photovoltaic Cells Fabricated with III-Vs and III-Vs grown on 
Czochralski Silicon”. Publication Number NREL/PR-6A20-60126

$0.55/W * 350W/m2 = 
$193/m2
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Cost modeling projections for high-volume production of dual junction GaAs0.75P0.25/Si PV on Si substrates. To get PEC material 
estimates in $/m2, $/W is multiplied by 370W/m2 (the efficiency). Modeling performed by Mike Woodhouse of NREL’s Strategic 
Analysis group, with funding provided by the DOE SunShot Initiative, “A Manufacturing Cost Analysis Relevant to Single- and Dual-
Junction Photovoltaic Cells Fabricated with III-Vs and III-Vs grown on Czochralski Silicon”. Publication Number NREL/PR-6A20-
60126 

$0.60/W * 370W/m2 = 
$222/m2
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• Rotating sample stage – 15 rpm
• N2

+ ion implantation first
o Key parameters: Angle (55°), distance (20 cm), pressure 

(8x10-4 N2), beam voltage (550 V), beam current (12 mA)
o Rotated 9 min through ion source (exposed 30 s) 

• PtRu alloy sputtering second
o Two passes through sputter plume (exposed < 0.5 s)

PtRu morphology & loading
• Scanning transmission electron microscopy 

o ~ 5 nm particles with approximately 30% surface coverage
• Inductively coupled plasma mass spectrometry

o Several samples digested in aqua regia, diluted solutions 
analyzed for PtRu

o Equivalent coverage (assuming a continuous thin film) is 
between 1-2 nm

– Adds $2/m2 to absorber costs
– Requires 66 g of Pt for a 1000 kg/day type 4 reactor array using 

ultimate DOE targets (25% STH, 15x concentration) 

Details of Ion Implantation and PtRu Sputtering Surface 
Modification
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Tungsten
light source

Xenon
light source

Filters

Beam 
splitter

Simulating AM 1.5 G Solar Spectrum
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