

Christopher Muhich, Samantha Miller, Ryan Trottier, Emory Smith, Alan Weimer and Charles Musgrave (P.I.)

University of Colorado at Boulder

Project: PD120 NSF CBET-1433521

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

- Start: 9-1-2014
- End: 8-31-2017
- 25% completed as of 5/31/2015
- 2 PhD students started 1/1/2015

Budget

- Total Project Funding
 - 2014-2017: \$525,371K NSF
- Funds received in FY15

\$58,000 (to be updated)

Partners

Prof. Alan Weimer (CU Boulder)

G

Barriers X. (to be updated)

Relevance

Overall Objectives:

1. Develop a computationally accelerated and experimentally validated materials-by-design approach to discover materials with optimum STWS properties and that can be tailored for materials discovery for other technologies;

2. Use our accelerated materials discovery approach to screen metal oxide materials for STWS and the reactor developed in the DOE effort and provide a rank ordered list of promising redox materials;

3. Address fundamental and broad materials chemistry questions in accomplishing tasks 1 and 2.

Objectives This Period:

- 1. Develop theoretical models that predict promising STWS thermodynamics and kinetics based on fundamental materials properties (descriptors).
- 2. Develop a computational materials screening approach based on 1 to identify materials with promising thermodynamic and kinetic properties for STWS.
- 3. Apply screening approach to binary oxides and validate its predictions.

Approach

Project Technical Approach

- Computational prototyping of hercynite & related materials integrating theory and experimentation
- Using both thermodynamic and kinetic filters in optimization of materials for quasi-isothermal solar water splitting

Apply fundamental materials science, chemistry and physics to develop materials design rules and discover promising materials using state-of-the-art electronic structure theory. For this objective, quantum simulations require careful, expert application due to limits of the methods, effects of spin and complexity of detailed mechanisms.

Criteria for Materials Assessment

Overall: $H_2O \rightarrow H_2 + 1/2 O_2$ ($\Delta H_{ws} = 286 \text{ kJ/mol}$) Oxidation: $\Delta S < 0$ therefore ΔH must be ≤ 0 Reduction: $\Delta H_{red} + \Delta H_{ox} \geq \Delta H_{ws}$ therefore ΔH_{red} must be $\geq 286 \text{ kJ/mol}$

If ΔH_{red} <286 kJ/mol, the material is unlikely to drive water splitting, and can be eliminated from screen.

A Case Study: Metal Aluminates

Hercynite Stoichiometric Rxn Has Insufficient Reduction Power, but O-vacancy Rxn Can Reduce Water

Predicted H₂ Generation of MAI_2O_4

Predicted O-vacancy relative H₂ production capacity:

Assuming full reduction of all reducible sites at 1500 C and using the relative availability of the sites, we predict the relative H_2 generation capacity of the aluminates operating via O-vacancy mechanism to be:

> $FeAl_2O_4 \ge Co_{0.5}Fe_{0.5}Al_2O_4 > CoAl_2O_4$ Relative H_2 production: 1: 0.7 : 2x10⁻⁴

> > CoFeAl2O4

FeAl204

CoAl2O4

CoAl2O4

FeAl204

Predicted Stoichiometric Reaction Relative H₂ Production Capacity:

If we assume that the STWS criterion ($\Delta H > 286$ kJ/mol) does not hold, and therefore any material can split water, we predict a relative H_2 generation capacity for the aluminates operating via a stoichiometric reaction mechanism to be:

> $CoAl_2O_4 > Co_0 Fe_0 Al_2O_4 > FeAl_2O_4$ Relative H₂ production: 1: 0.13: 0.004

1 Fe neighbor

2 Fe neighbors

O-vacancy sites in FeAl₂O₄

Experimental Validation of Predicted STWS Behavior and Mechanism

1500/1350°C Near-isothermal Water Splitting

Relative H₂ production capacity: $FeAl_2O_4 \ge Co_{0.5}Fe_{0.5}Al_2O_4 > CoAl_2O_4$

Relative H_2 production: 1: 0.6 : 0

Predicted O-vacancy H₂ production capacity:

FeAl₂O₄ \ge Co_{0.5}Fe_{0.5}Al₂O₄ > CoAl₂O₄ Relative H₂ production: 1: 0.7 : 2X10⁻⁴

Predicted stoichiometric H₂ production capacity:

Experimental H_2 generation matches our predicted Ovacancy mechanism H_2 generation values. Therefore, the aluminates likely operate via an O-vacancy mechanism and the thermodynamic criteria developed for assessing STWS materials and mechanism is valid. Additionally, a new STWS material FeAl₂O₄ has been shown to be active.

Simple Descriptor Model Predicts $\Delta H_f(O \text{ vac})$

а

С

- Vacancy formation energy predicted using descriptor model.
- Errors in predicting band gap by DFT methods are systematic (as determined by GW₀) and scaled in model.
- Descriptor model applies to a broad range of
- metal oxides.

Deml, Holder, O'Hayre, Musgrave and Stevanovic, Submitted 2015.

Binary Novel Perovskite Screening

- Calculated predicted E_{O-vac} for 1045 possible binary perovskites using method developed in our group by Deml *et al.*
- 570 materials spontaneously phase transitioned out of the perovskite structure
- 237 materials have reduction enthalpies too low to drive STWS (E_{O-vac} < 280 kJ/mol)
- 199 materials are potentially capable of driving STWS^{*} (280 kJ/mol <E_{O-vac} < 600 kJ/mol)
- 39 materials have reduction enthalpies too high for practical use as STWS materials (E_{0-vac} > 600 kJ/mol)

* Materials were not analyzed for thermal stability or fabrication practicality

Spin Considerations

Relative energies in kJ/mol of the spin states for inverse and normal aluminate and ferrite spinels.

Configuration		Co ₃ O ₄	CoAl ₂ O ₄	CoFe ₂ O ₄	Fe ₃ O ₄	FeAl ₂ O ₄
Inverse ^a	All up ^c	135	0.0	71	52	0.0
	Alternating layers ^d	57	0.7	19	0.0	0.3
	Tetrahedral and octahedral ^e	83	N/A	0.0	8	N/A
	Other	0.0 ^f	N/A	N/A	N/A	N/A
Normal ^b	All up ^c	N/A	19	34	N/A	0
	Alternating layers ^d		0	0		54
Inversion energy ^g			85	-14		33
Inversion parameter (x) at 1200 °C			0.02	0.85		0.23

A,bEnergy differences in kJ/mol

°All electrons for Co and Fe atoms initially set to spin up

^dElectrons in every other layer of Co and/or Fe atoms initially set to alternate spin up & spin down.

^eElectrons of all tetrahedral atoms initially set to spin up. Electrons of all octahedral atoms initially set to spin down.

^fElectrons of tetrahedral Co atoms initially set to high spin states (μ =3) and octahedral Co atoms initially set to low spin states (μ =0.1).

^gThe energy difference, in kJ/mol, between the lowest energy inverse structure and normal structure. A positive number indicates that the normal structure is energetically preferred, while a negative number indicates that the inverse structure is preferred.

Considerations:

- Lowest energy spin state may vary between normal and inverse structure
- Lowest energy spin states may vary between host structure and O-vacancy defect structure
- Finding spin states currently requires manually testing of multiple configurations followed by multiple runs near minimum for verification

Possible Opportunities:

- Develop script for 'smart' testing of spin states
- Incorporate spin effects into O-vacancy model

Both spin and inversion can significantly affect the predicted STWS behavior of candidate materials - requires added complexity in O-vacancy formation energy models

Approach to Kinetic Determination

Stable Intermediates Along Reaction Path for Water Splitting on Hercynite

Started analysis with stable adsorbed intermediates for water splitting on hercynite with and without oxygen vacancies.

^{*}Hansen, H. A., & Wolverton, C. (2014). Kinetics and Thermodynamics of H2O Dissociation on Reduced CeO2(111). *The Journal of Physical Chemistry C, 118*(47), 27402-27414. doi: 10.1021/jp508666c

Hydrogen formation appears unfavorable without the oxygen vacancies. The activation barriers along this pathway will not be calculated.

On ceria, the formation of hydrogen is the rate limiting process in the water splitting reaction.^{*} We expect that it will be the most important activation barrier for other materials as well.

Preliminary Kinetics Results

(HO-Al₃ & HO-FeAl₂)

NEB method is being used to identify the transition state of the hydrogen evolution reaction on hercynite (in progress)

Iron hydrogen interactions appear to stabilize points around the transition state

Collaborators

Prof. Alan Weimer (Univ. of Colorado Boulder)

Prof. Ryan O'Hayre (Colorado School of Mines) Dr. Ann Deml (NREL) Dr. Aaron Holder (NREL) Dr. Vladan Stevanovic (NREL)

Technology Transfer Activities

Ŧ

None to date

Future Work

- 1. Determine whether our approach for predicting the H₂ production capacities extends to a broader set of metal oxides.
- 2. Applied our STWS approach for predicting water splitting abilities to additional binary perovskites and then to ternary perovskites and other metal oxides.
- 3. Extend our descriptor model of oxygen vacancy formation energy to systems with various spin and oxygen vacancy configurations, including "smart" scripts for automated searches.
- Continue to develop a model to predict H₂ formation kinetics (which are rate-limiting) based on fundamental materials descriptors and validate it with direct transition state calculations and kinetics experiments.
- 5. Develop automated processes for analyzing the materials data calculated to determine correlations between STWS redox abilities and fundamental materials properties.

Summary

1. Identified a simple criteria and approach for assessing the redox capabilities of metal oxides.

2. Developed and experimentally validated an approach to predict the H₂ production capacities and redox mechanisms in metal oxides. Extending approach to other systems.

3. Applied our previously developed model to predict the water splitting abilities of over 1000 binary perovskites (as of 4/10/2015) and identified ~200 materials with redox thermodynamics capable of splitting water.

- 4. Extended descriptor model of oxygen vacancy formation energy. Model applies well to systems with limited numbers of low energy spin configurations.
- 5. Calculated Developing automated approaches to examine the effects of local atomic and spin arrangements on oxygen vacancy formation energy and redox thermodynamics.
- 6. Developing a model to predict H_2 formation kinetics (which are rate-limiting) based on fundamental materials descriptors.

Acknowledgements

Amanda Hoskins (Univ. of Colorado Boulder) Brian Ehrhart (Univ. of Colorado Boulder) Aaron Holder (NREL) National Science Foundation - CBET

Back-up slides

Spinel structure

High temperature XRD also suggests an O-vacancy mechanism for the hercynite cycle

22

EDS analysis of phase segregation in the hercynite material

Reduced

Oxidized in CO₂

EDS analysis of phase segregation in the hercynite material

STWS phase separation or no separation

Scheffe et al. E&ES, 2013, 6, 963

Stagnation Flow Reactor

Water Splitting Reactor Set-up

Highly Porous Scaffolding

- Cavilink[™] Porous Polymer
- Maximum internal volume > 90%
- Density (typical) < 0.1 g/cc
- Cavity diameter up to 30 μm
- Composition many polymer formulations possible

Particle Coating

 SEM and TEM of Al₂O₃ coatings on polymer Scaffolding