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Overview

Timeline
• Start:  9-1-2014
• End:    8-31-2017
• 25% completed as of 5/31/2015
• 2 PhD students started 1/1/2015

Budget
• Total Project Funding

2014-2017: $525,371K  NSF
• Funds received in FY15 

$58,000 (to be updated)

Partners
Prof. Alan Weimer (CU Boulder)

Barriers
X. (to be updated)
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Relevance

Overall Objectives:
1. Develop a computationally accelerated and 
experimentally validated materials-by-design 
approach to discover materials with optimum 
STWS properties and that can be tailored for 
materials discovery for other technologies;
2. Use our accelerated materials discovery 
approach to screen metal oxide materials for 
STWS and the reactor developed in the DOE 
effort and provide a rank ordered list of 
promising redox materials;
3. Address fundamental and broad materials 
chemistry questions in accomplishing tasks 1 
and 2.

Objectives This Period:
1. Develop theoretical models that predict 

promising STWS thermodynamics and kinetics 
based on fundamental materials properties 
(descriptors).

2. Develop a computational materials screening 
approach based on 1 to identify materials with 
promising thermodynamic and kinetic properties 
for STWS. 

3. Apply screening approach to binary oxides and 
validate its predictions. 
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Approach

Project Technical Approach
• Computational prototyping of

hercynite & related materials
integrating theory and
experimentation

• Using both thermodynamic and
kinetic filters in optimization of
materials for quasi-isothermal
solar water splitting

Apply fundamental materials science, chemistry and 
physics to develop materials design rules and 
discover promising materials using state-of-the-art 
electronic structure theory. For this objective, 
quantum simulations require careful, expert 
application due to limits of the methods, effects of 
spin and complexity of detailed mechanisms. 



Criteria for Materials Assessment 

Overall:   H2O  H2 + 1/2 O2 (ΔHws = 286 kJ/mol)
Oxidation:  ΔS < 0 therefore ΔH must be ≤ 0 

Reduction: ΔHred + ΔHox ≥ ΔHws therefore ΔHred must be ≥ 286 kJ/mol

ΔHred < 0 kJ/mol ΔHred > 286 kJ/mol

If ΔHred <286 kJ/mol, the material is unlikely to drive water 
splitting, and can be eliminated from screen.
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A	  Case	  Study:	  Metal	  Aluminates	  

O-‐vacancy	  FormaQon	  mechanism	  Stoichiometric	  Mechanism	  
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Hercynite Stoichiometric Rxn Has Insufficient Reduction 
Power, but O-vacancy Rxn Can Reduce Water  

O-vacancy Formation MechanismStoichiometric Mechanism

ΔHred = 150 kJ/mol
ΔHox = 138 kJ/mol

ΔHred = 384 to 621 kJ/mol
ΔHox =  -102 to -335 kJ/mol

Not thermodynamically viable Thermodynamically viable

ΔHred > 286 kJ/molΔHred < 0 kJ/mol

If ΔHred <286 kJ/mol, the material is 
unlikely to drive water splitting, and 
can be eliminated from screen.



Predicted H2 Generation of MAl2O4

O-vacancy formation energy O-vacancy site formation energy

CoAl2O4 > Co0.5Fe0.5Al2O4 > FeAl2O4
Relative H2 production: 1: 0.13: 0.004

If we assume that the STWS criterion (ΔH > 286 kJ/mol) does not hold,
and therefore any material can split water, we predict a relative H2
generation capacity for the aluminates operating via a stoichiometric
reaction mechanism to be:
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3 Fe neighbors 4 Fe neighbors

O-vacancy sites in FeAl2O4

Predicted Stoichiometric Reaction Relative H2 Production Capacity:

FeAl2O4 ≥ Co0.5Fe0.5Al2O4 > CoAl2O4
Relative H2 production: 1: 0.7 : 2x10-4

Assuming full reduction of all reducible sites at 1500 C and using the
relative availability of the sites, we predict the relative H2 generation
capacity of the aluminates operating via O-vacancy mechanism to be:

Predicted O-vacancy relative H2 production capacity:

Stoichiometric chemistry 8



Experimental Validation of Predicted STWS Behavior 
and Mechanism

Relative H2 production capacity:
FeAl2O4 ≥ Co0.5Fe0.5Al2O4 > CoAl2O4
Relative H2 production: 1: 0.6 : 0

FeAl2O4

Cox Fe1-xAl2O4

CoAl2O4

FeAl2O4

Cox Fe1-xAl2O4

CoAl2O4

Experimental H2 generation matches our predicted O-
vacancy mechanism H2 generation values. Therefore,
the aluminates likely operate via an O-vacancy
mechanism and the thermodynamic criteria developed
for assessing STWS materials and mechanism is
valid. Additionally, a new STWS material FeAl2O4 has
been shown to be active.

1500/1350°C Near-isothermal Water Splitting
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Predicted stoichiometric H2 production capacity:
CoAl2O4 > Co0.5Fe0.5Al2O4 > FeAl2O4

Relative H2 production: 1: 0.13: 0.004

Predicted O-vacancy H2 production capacity:
FeAl2O4 ≥ Co0.5Fe0.5Al2O4 > CoAl2O4

Relative H2 production: 1: 0.7 : 2X10-4



Simple Descriptor Model Predicts ΔHf(O vac)
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• Vacancy formation energy predicted using
descriptor model.
• Errors in predicting band gap by DFT methods
are systematic (as determined by GW0) and scaled
in model.
• Descriptor model applies to a broad range of
• metal oxides.

Deml, Holder, O’Hayre, Musgrave and Stevanovic, Submitted 2015. 



• Calculated predicted EO-vac for 1045 possible binary perovskites using method 
developed in our group by Deml et al. 

• 570 materials spontaneously phase transitioned out of the perovskite structure
• 237 materials have reduction enthalpies too low to drive STWS (EO-vac < 280 kJ/mol)
• 199 materials are potentially capable of driving STWS*

( 280 kJ/mol <EO-vac < 600 kJ/mol)
• 39 materials have reduction enthalpies too high for practical use as STWS materials ( 

EO-vac > 600 kJ/mol)
* Materials were not analyzed for thermal stability or fabrication practicality

Binary Novel Perovskite Screening

Non-perovskite
54%

Ev<280 kJ/mol
23%

280 kJ/mol <  Ev 
<600 kJ/mol

19%

Ev>600 kJ/mol
4%

Binary Perovskite Screening Results

1045 materials screened
As of 4/10/2015

Elements Considered for Use in Redox Materials
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Spin Considerations
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Configuration Co3O4 CoAl2O4 CoFe2O4 Fe3O4 FeAl2O4

Inversea

All upc 135 0.0 71 52 0.0
Alternating 

layersd 57 0.7 19 0.0 0.3

Tetrahedral 
and 

octahedrale
83 N/A 0.0 8 N/A

Other 0.0f N/A N/A N/A N/A

Normalb

All upc

N/A
19 34

N/A
0

Alternating 
layersd 0 0 54

Inversion energyg 85 -14 33

Inversion parameter (x) 
at 1200 °C

0.02 0.85 0.23

A,bEnergy differences in kJ/mol
cAll electrons for Co and Fe atoms initially set to spin up
dElectrons in every other layer of Co and/or Fe atoms initially set to alternate spin up & spin down.
eElectrons of all tetrahedral atoms initially set to spin up. Electrons of all octahedral atoms initially set to 
spin down.
fElectrons of tetrahedral Co atoms initially set to high spin states (μ=3) and octahedral Co atoms initially 
set to low spin states (μ=0.1).
gThe energy difference, in kJ/mol, between the lowest energy inverse structure and normal structure. A 
positive number indicates that the normal structure is energetically preferred, while a negative number 
indicates that the inverse structure is preferred. 

Both spin and inversion can significantly affect the predicted STWS behavior of candidate
materials - requires added complexity in O-vacancy formation energy models

Relative energies in kJ/mol of the spin states for inverse and 
normal aluminate and ferrite spinels.

Considerations:
• Lowest energy spin state may vary between normal

and inverse structure
• Lowest energy spin states may vary between host

structure and O-vacancy defect structure
• Finding spin states currently requires manually

testing of multiple configurations followed by
multiple runs near minimum for verification

Possible Opportunities:
• Develop script for ‘smart’ testing of spin states
• Incorporate spin effects into O-vacancy model



Approach to Kinetic Determination
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Stable Intermediates Along Reaction Path for Water Splitting on Hercynite

Independent of Dissociation H Dissociated (1 x O-FeAl2)
H Dissociated (2 x O-FeAl2) H Dissociated (1 x O-FeAl2 + 1 x O-Al3)
O-Vacancy (O-Al3) O-Vacancy (O-FeAl2)
No O-Vacancy

*Hansen, H. A., & Wolverton, C. (2014). Kinetics and Thermodynamics 
of H2O Dissociation on Reduced CeO2(111). The Journal of Physical 
Chemistry C, 118(47), 27402-27414. doi: 10.1021/jp508666c

On ceria, the formation of hydrogen is the rate
limiting process in the water splitting reaction.* We
expect that it will be the most important activation
barrier for other materials as well.

Water above 
Surface

Water Adsorbed 
on Surface

Dissociated 
State

Hydrogen 
Product

Started analysis with stable
adsorbed intermediates for
water splitting on hercynite with
and without oxygen vacancies.

Hydrogen formation appears unfavorable without
the oxygen vacancies. The activation barriers along
this pathway will not be calculated.

Dissociated State (2xHO-FeAl2)
Dissociated State (HO-FeAl2 & HO-Fe)Independent of Dissociation
Dissociated State (HO-FeAl2 & HO-Al3)

O-Vacancy Coordinated to 3xAl (O-Al3) O-Vacancy Coordinated to 1xFe and 2xAl (O-FeAl2)
No O-Vacancy
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Preliminary Kinetics Results
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NEB method is being used to
identify the transition state of
the hydrogen evolution reaction
on hercynite (in progress)

Iron hydrogen interactions
appear to stabilize points
around the transition state
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Collaborators
Prof. Alan Weimer (Univ. of Colorado Boulder)
Prof. Ryan O’Hayre (Colorado School of Mines)
Dr. Ann Deml (NREL)
Dr. Aaron Holder (NREL)
Dr. Vladan Stevanovic (NREL)
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Technology Transfer Activities

None to date
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Future Work

1. Determine whether our approach for predicting the H2 production capacities extends to a 
broader set of metal oxides.

2. Applied our STWS approach for predicting water splitting abilities to additional  binary 
perovskites and then to ternary perovskites and other metal oxides. 

3. Extend our descriptor model of oxygen vacancy formation energy to systems with various spin 
and oxygen vacancy configurations, including “smart” scripts for automated searches.

4. Continue to develop a model to predict H2 formation kinetics (which are rate-limiting) based on 
fundamental materials descriptors and validate it with direct transition state calculations and 
kinetics experiments. 

5. Develop automated processes for analyzing the materials data calculated to determine 
correlations between STWS redox abilities and fundamental materials properties. 
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Summary
1. Identified a simple criteria and approach for assessing the redox capabilities of metal oxides.
2. Developed and experimentally validated an approach to predict the H2 production capacities 
and redox mechanisms in metal oxides. Extending approach to other systems.  
3. Applied our previously developed model to predict the water splitting abilities of over 1000 
binary perovskites (as of 4/10/2015) and identified ~200 materials with redox thermodynamics 
capable of splitting water.  
4. Extended descriptor model of oxygen vacancy formation energy. Model applies well to systems 
with limited numbers of low energy spin configurations.
5. Calculated Developing automated approaches to examine the effects of local atomic and spin 
arrangements on oxygen vacancy formation energy and redox thermodynamics. 
6. Developing a model to predict H2 formation kinetics (which are rate-limiting) based on 
fundamental materials descriptors. 
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Spinel structure
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High temperature XRD also suggests an O-vacancy 
mechanism for the hercynite cycle
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b)

d)

Reduced

Oxidized in CO2

EDS analysis of phase segregation in the 
hercynite material
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EDS analysis of phase segregation in the 
hercynite material

Red=Fe
Green=Co
Blue=Al
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STWS phase separation or no separation

Scheffe et al. E&ES, 2013, 6, 963

Reduced
Fe3O4/ZrO2

Unreacted
Fe3O4/ZrO2

Fe (Kα1)

Al (Kα1)

Fe (Kα1)

Al (Kα1)

6 μm

6 μm

6 μm

4 μm

4 μm

4 μm

Oxidized
Hercynite

Reduced
Hercynite
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Stagnation Flow Reactor
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Water Splitting Reactor Set-up

O2 Analyzer

In-Situ Mass Spec

Furnace 25 – 1700 °C

Steam Generator
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• CavilinkTM Porous Polymer
• Maximum internal volume > 90%
• Density (typical) < 0.1 g/cc
• Cavity diameter up to 30 μm
• Composition – many polymer formulations possible

Highly Porous Scaffolding
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• SEM and TEM of Al2O3 coatings on polymer 
Scaffolding

Particle Coating

(a) (b)

Alumina film
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