

This presentation does not contain any proprietary, confidential, or otherwise restricted information

High Performance Platinum Group Metal Free Membrane Electrode Assemblies Through Control of Interfacial Processes

- P. I. Name: Kathy Ayers
- Presenter: Christopher Capuano
- Organization: Proton OnSite
- Date: June 10th, 2015

Project ID: PD123

DE-EE0006958

Overview Timeline

- Project Start: 8 May 2015
- Project End: 7 May 2017
- Percent complete: 0%

Budget

- Total project funding
 - DOE share: \$1,000,000
 - Cost-share: \$250,000
- Funding for FY15 to date \$0
 - DOE share:

Barriers

 Barriers addressed G: Capital Cost

Table 3.1.4 Technical Targets: Distributed Forecourt Water Electrolysis Hydrogen Protoduction ^{a, b, c}									
Characteristics	Units	2011 Status	2015 Target	2020 Target					
Hydrogen Levelized Cost ^d (Production Only)	\$/kg	4.2 ^d	3.9 ^d	2.3 ^d					
Electrolyzer System Capital Cost	\$/kg \$/kW	0.70 430 ^{e, f}	0.50 300 ^f	0.50 300 ^f					
	%(LHV)	67	72	75					
System Energy Efficiency °	kWh/kg	50	46	44					
Stack Energy Efficiency ^h	% (LHV)	74	76	77					
2	kWh/kg	45	44	43					

Partners

- Northeastern University
- Pennsylvania State University
- University of New Mexico

Relevance: Problem to be Addressed

- Capital cost reductions needed to overcome market barriers
- Anion exchange membranes (AEMs) gaining stability
 - Enable elimination of most expensive cell materials

Comparison of proton exchange membrane (PEM) and AEM stacks

PENNSTATE.

Relevance: Hydrogen Value Proposition

- Hydrogen via electrolysis is ideally suited for:
 - Grid-buffering and energy storage
 - Transportation fuel
 - Renewable feedstock to high value chemical streams
 - Green production of fertilizer
 - Supplement to natural gas for higher efficiency
- Easily scalable; can independently scale charge, discharge, and storage capability

PENNSTATE

Relevance: AEM Electrolyzer Concept

- Reconfigure PEM generator to operate as AEM system
- Leverage PEM products and AEM prototypes
- Eliminate platinum group metals (PGM) materials
- Revisit electrolyte feed (anode vs. cathode)
- Improve membrane durability
- Directly ties to FCTO mission by addressing capital cost targets for electrolyzers

AEM Prototype System

Northeastern

PENNSTATE.

Relevance: AEM Electrolysis

Catalyst:

 Goal: Improve translation of activity from solution to membrane, with less than 50 mV gap in performance at 500 mA/cm²

Membrane and ionomer:

- Goal: Increase in membrane and ionomer stability, with voltage decay rates reduced to less than 50 mV/hr
- Goal: Control water uptake in the membrane for improved mechanical stability under electrolysis operation

Cell Design:

 Goal: Stack and system water distribution improvements through alternative feed operations and tuning of gas diffusion layers (GDLs)

PENNSTATE

Approach: Task Breakdown

Approach: Catalyst Development

Comparison of previous work at NUCRET on alkaline HER (above) and OER (right) to state-of-the-art Ni-Mo and perovskite nanoparticles.

Better utilization through more effective gas diffusion electrode

PENNSTATE

Northeastern

Page 8

Approach: Membrane and Ionomer

- PPO is a highly stable backbone for AEMs
 - Absence of electron withdrawing groups in the main chain
 - Cation spacer polymers have 5-10X greater hydroxide stability than side chain benzyl-linked cation

Side chain benzyl dimethylalkyl ammonium

Cation spacer dimethyldialkyl ammonium

PENNSTATE.

Approach: Membrane and Ionomer

- Gas diffusion electrodes will be fabricated with Penn State ionomers.
 - Water management through modification of layers

Approach: AEM System Design

- Water management within the system will be explored.
 - Durability and performance, as a function of feed water delivery.
 - Cathode versus anode feed of DI H₂O
- System will serve as test station for stack durability tests and proof of concept for a cheaper laboratory generator

Full 1L/min System

Anode feed operation in this mode

PENNSTATE.

Northeastern

Page 11

Approach: AEM Stack Design

- Incorporate cost-reduced materials for cell and stack parts.
- Tune of gas diffusion layers for stable operation of the AEM-WE

Analysis of part without treatment for water management (top) versus treated (bottom).

Approach: Overall Program

THE UNIVERSITY of NEW MEXICO

DN SITE

S'STE

Technical Accomplishments: Timeline

ID		Task Name		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
	0						i			· · ·		
1		Task 1: Synthesis of Catalyst Materials for HER & OER	ſŢ		2 2 2		2 2 2 2					,
2		NUCRET catalyst component identification						2				
3		NUCRET refinement of catalyst composition and micro-structure						Č				
4		UNM single oxide synthes is					8 8 8 8 8 8 8 8 8 8 8 8					
5		UNM synthesis of spinel materials.			Č							
6		Scale up of SSM materials up to 25g					8 8 8 8 8 8 8 8 8	Č –				
7		Task 2: Membrane/lonomer Synthesis and Characterization	♥		-		-			Ψ		
8		Scale up Benzyl Side Chain AEMs	lđ									
9		Synthesis optimization and Scale Up										
10		Task 3: Characterization of Catalyst Materials for HER & OER	🛡									J
11		3 electrode testing	1					2				
12		2 electrode testing	↓							:		
13		Structural Characterization										
14		Task 4: Bectrode Fabrication and Characterization of Interfacial Effect	+			•						
15		Task 5: Cell Engineering										
16		Task 6: Prototype/System Demonstration			- - 					Č	: :	

PENN<u>STATE.</u>

N.ST

Technical Accomplishments: Prior Work - Anode Feed

Page 15

PENNSTATE.

N. ST

Technical Accomplishments: Prior Work - GDE Manufacture

Binder Evaluation Polarization Curves at 50°C

Page 16

Technical Accomplishments: Prior Work - Stable Operation

THE UNIVERSITY of NEW MEXICO

ON SITE

Future Work

- Catalyst
 - Use of sacrificial supports to synthesize un-supported mixed oxides or perovskite materials for OER.
 - Scale to 10-25g batches of catalysts
- Membrane and lonomer
 - Maintain conductivity and improve stability of ionomers and membrane by >5X
 - Scale up to +100g batches
- Cell and System Design
 - Tune hydrophobicity, porosity, and geometry of the GDLs
 - Investigate alternate modes of water feed

Collaborators

- Penn State
 - Synthesis and tuning of ionomer and membrane
 - Scale up batch sizes for use by partners and final test
- University of New Mexico
 - Preparation of sacrificial supports for pure oxides and spinel materials for OER
 - UNM will optimize sacrificial support (SiO₂ vs MgO), metal precursor type, heat treatment parameters, and sacrificial support removal conditions
- Northeastern University
 - M/M_{Ox} work on HER catalysts and the effects of various post-synthesis heat-treatments.
 - Electrodeposited ternary Ni-Fe-X (X=Co, Mo,etc.) GDEs
 - Wet synthesis of composite Ni-Fe-X materials with carbon nanotubes (CNTs) or other conductive nano-polymers (CNPs)

Summary

- **Relevance:** The goal of the proposed effort is to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) completely free of PGMs
- Approach:
 - Optimization of electrocatalyst conductivity, dispersion and utilization; understanding of catalystmembrane-ionomer interfaces and how they differ from liquid electrolyte
 - AEM stability and robustness at high potentials and gas evolution conditions; water management
 - Cheaper materials of construction for cell stack and system to further reduce total \$/kg H₂
- Collaborations:
 - Penn State (Hickner): membranes and ionomers
 - University of New Mexico (Atanassov): New non-PGM catalysts and support architectures
 - Northeastern (Mukerjee): catalyst-electrolyte interface and new non-PGM catalysts
- Proposed Future Work:
 - Synthesize PGM free HER and OER catalysts
 - Synthesize alternative AEM and ionomer for improved stability
 - Optimize cathode and anode GDEs to improve water management for operational stability
 - Evaluate operational mode with electrolysis system for stability (cathode vs anode feed)
 - Reduce cost of stack and system components for total electrolyzer reduction in cost

