

Performance and Cost Analysis for a 300 kW Tri-generation Molten Carbonate Fuel Cell System

PI: Shabbir Ahmed Presenter: Dionissios (Dennis) Papadias Co-PIs: Rajesh Ahluwalia, Thanh Hua, and H-S Roh Argonne National Laboratory

2015 U.S. DOE HYDROGEN and FUEL CELLS PROGRAM and VEHICLE TECHNOLOGIES OFFICE ANNUAL MERIT REVIEW and PEER EVALUATION MEETING

June 9, 2015 Project ID: SA054

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project start date: FY 2015
- Project end date: Sep. 2015

Barriers

- Future Market Behavior (A)
- Inconsistent Data, Assumptions and Guidelines (C)
- Unplanned Studies and Analysis (E)

Budget

- FY15 FCTO Funding: \$100 K
- FY15 VTO Funding: \$100 K

Partners/Interactions

- Fuel Cell Energy
- Argonne (ES, FMS)
- Strategic Analysis (SA)
- PDC Machines, RIX Industries

Objectives

- Determine the performance and cost benefits of a molten carbonate fuel cell (MCFC) plant that can co-produce electric power, hydrogen, and heat.
- Develop meaningful definitions for cell, stack, electrical, hydrogen production efficiencies in tri-generation modes.
- Explore scenarios in which the MCFC trigeneration system has particular cost benefits including the scenario for charging electric vehicles.
- Examine strategies (waterfall chart) for improving the performance and reducing the cost relative to the one-off OCSD tri-gen system.

Relevance

- Tri-generation systems offer a blend of products (power, hydrogen, heat) to match local demand.
- The waste heat produced in high-temperature fuel cells can be utilized to reform hydrocarbon fuels.
- Flexibility in tri-generation offers an opportunity to produce hydrogen at night when the electricity demand (rates) is low and to produce electricity during day when the electricity demand (rates) are high.
- Revenue from electricity generation, electric vehicle charging and usable waste heat can subsidize (off-set) the cost of producing hydrogen.

Project Overview

Assessment of Efficiency, Cost, and Potential for Cost Reduction for a Tri-gen Plant

Approach

- Formulate a consistent system performance model of thermally-integrated natural gas (NG) fuel processor and MCFC stack in the electricity generation mode (CHP)
- Develop models for hydrogen purification by pressure swing adsorption (PSA) and hydrogen compression, storage and dispensing (CSD)
- Extend the CHP model to combined electricity, hydrogen and heat mode (CHHP) by coupling the CHP, PSA and CSD subsystems
- Develop performance metrics for the MCFC stack, electricity generation, hydrogen production, PSA, and hydrogen storage.
- Formulate cost models for MCFC stack, mechanical and electrical balance of plant (MBOP and EBOP), PSA, CSD, and vehicle charging system.
- Conduct cost studies and sensitivity analyses for the levelized cost of electricity generation and hydrogen production.
- Explore strategies to improve the performance of the system in CHP and CHHP modes
- Analyze scenarios to improve the economics of MCFC based tri-generation plants

MCFC Tri-Gen System Performance Model

GCtool model for system performance: 100% electric and combined electricity generation and hydrogen production modes

- MCFC stack with internal reforming
- Air supply system
- Fuel cleanup and reformate processing: sulfur removal, pre-reformer, WGS*
- H₂ purification by pressure swing adsorption (PSA)
- Compression storage and dispensing (CSD): 5-stage ionic compressor
- Waste heat recovery

Operating Mode	100% Electricity	Comments				
Stack and Fuel Processing					. Ö	
Fuel Utilization (%)	73	Maximum fuel utilization limited by 650°C stack temperature; determines Nernst potential			U	
Oxygen Utilization (%)	60	Determines burner and stack temperatures, and Nernst potential	FCEV Refueling	EV Charging	Power	Waste Heat
Steam to Carbon Ratio	2	Determines methane slip and carbon formation			1	\$
Air Compressor Efficiency (%)	60	Typical data for air blowers		<u>e</u> ▶◀┐ └;	() AC	<pre> </pre>
Inverter Efficiency (%)	97	Data from APCI, Fuel Cell Energy and OCSD			Ý	\$
H ₂ Purification (PSA) System						<pre>}</pre>
Hydrogen Recovery (%)	75	Depends on PSA pressure (10 bar), reformate composition and H ₂ purity, 64% at 5 bar		WGS MCFC	Р	re-
PSA Compressor Efficiency (%)	58	Data for RIX 2-stage, double acting, air-cooled, oil- free compressor		Anode -	Refo	ormer Waste
H ₂ Compression Storage and					Su Su	Ifur Heat
Delivery (CSD)					Ken	Kecovery
Storage Pressure (bar)	930	Overpressure needed for 700-bar refueling				↑ [₹] ~~~~~
H ₂ Compressor Efficiency (%)	80	Data for Linde's 5-stage ionic H ₂ compressor: 2.7 kWh/kg energy consumption over 5-1000 bar	H ₂ O-	Irner		
		· · · · ·			F	uel

Higher fuel input, lower fuel utilization to co-produce H₂ without loss of electrical capacity

 H_2 production >50 kg/d requires 5% increase in fuel input to stack and supplemental fuel to burner

 Fuel utilization (U_F) defined assuming 1 mole of C can produce 2 moles of H₂: C + 2H₂O = CO₂ + 2H₂

Par	ame	eter				V	alues				Cor	nstrain	t		
Fue	l Ut	ilizatio	on (%)			7	3 - 60	Supply	70-	125 kg	$/d H_2 to$	o CSD			
Air	Flo	w Rate	(g/s)			28	6 - 260	Operat	e sta	ick at c	onstant	: 60% o	xygen	utilizat	tion
Frac	ction	n Refo	mate to	o Burne	er (%)	10	00 - 15	Mainta	in 6	50°C st	tack ter	nperatu	ire		
8	80	-		Fue	el Utili	zation		2	275	2 <u>58</u> .1		Electr	ic Pov	wer to	Grid
7	75	73.0	72.6					2 م	250		239.9				
n, %	70							Ž 2	225			211.4			
atio				64 7				2 MeL	200				200.9	192.0	
Utiliz	65							L ic L	75	Ē					183.1
nel l	60				60.0	60.0	60.0	ectr							
ш,	55							et El	50						
•	55							z 1	25						
ţ	50	t 📃			75		405	1	00						
		U	25 H ₂ P	roduct	ion, kg	100 /d	125			0	25 H ₂ I	50 Produc	75 tion, k	100 g/d	125

7

Electrical efficiencies decrease as more H₂ is co-produced

Gross Electrical Efficiency (η_{e1}): Ratio of gross AC power produced to the LHV of fuel consumed ($Q_F - Q_{CSD}$) in producing gross power

$$\eta_{e1} = \frac{\eta_{in}P_{MC} - P_d}{Q_F - Q_{CSD}} \qquad P_d = P_F + P_W + P_A + P_{AX} + P_{raf}$$

Net Electrical Efficiency (η_e): Ratio of AC power supplied to the grid to the LHV of fuel (Q_F) fed to the station

87% H₂ generation efficiencies possible with stack waste heat

Hydrogen Generation Efficiency (η_{H_2}): Processes such as fuel oxidized in the burner, H₂ consumption in fuel cleanup (HDS: hydro-desulfurization) and waste heat contribute to the loss in H₂ generation efficiency

 All or some of the H₂ produced in the pre-reformer and MCFC stack (MC) is converted to DC power in the MCFC stack

•
$$\eta_{H_2} = \frac{(Q_{H_2,MC} + Q_{H_2,CSD})}{Q_F}$$

Net Hydrogen Generation Efficiency (η_{FP}): Ratio of LHV of H₂ supplied to CSD to the LHV of fuel fed to the station

87% H₂ storage efficiency and 32% waste heat recovery efficiency is possible

H₂ Storage Efficiency (η_{CSD}): Accounts for the LHV of fuel expended in producing the power required by the H₂ compressor (P_{PSD}).

•
$$\eta_{CSD} = \frac{Q_{H_2,CSD}}{Q_{H_2,CSD} + \frac{P_{CSD}}{\eta_{e1}}}$$

Heat Recovery Efficiency (η_{th}): Defined as the heat that can be recuperated (Q_{th}) at temperature above 100°C: $\eta_{th} = \frac{Q_{th}}{Q_F}$

 Lower grade heat also available in interstages of air, PSA and H₂ compressors.

Possible subjects for future study

- Include H₂ compressor operating curves,
- Alternate compressors, e.g., diaphragm compressor
- Electrochemical pumps for combined H₂ purification and compression
- Trade-off between PSA and H₂ compressor power by lowering the PSA pressure

MCFC Cost Model - Assumptions & Methodology

 Extensive literature and patent searches to identify process flow, material and equipment requirements. Direct inquiries with OEMs for BOP costs.

Cell	Com	ponents

- Ball milling
- Slurry formulation
- Tape casting
- Sintering

Bipolar Plate

- Metal shaping, stamping
- Ni cladding
- Heat treatment
- Welding

<u>Stack</u>

- Assembly
- Conditioning

Category	Items	Assumptions
Coll & Dipolar Diata	Anode, Cathode	Material purchased from suppliers*
Cell & Bipolar Plate	Matrix, Bipolar plate	Multiple lines operating in parallel
Stack	Assembly	Includes cost of labor and parts
BOP	MBOP/EBOP	OEM quotes/literature
Capital	Equipment Maintenance/Parts Building Recovery factor	10-yr lifetime 5% direct capital \$150/ft ² 0.24
Energy	Electricity	\$0.07/kWh
Labor		\$45/h

*Ni (\$32/kg), NiO (\$32/kg), Al₂O₃ (\$12/kg), Li₂CO₃ (\$5.8/kg), K₂CO₃ (\$1.3/kg)

MCFC Cost reduction due to economy of scale levels off beyond a MCFC unit production rate of 50 MW per year

- BOP accounts for the largest portion (40-42) of the total system cost, major contributors to BOP cost (excluding the PSA) are the raffinate compressor, shift reactor, desulfurizer and the DCAC inverter
- MCFC system cost reduced by 30% as annual production increases from 20 to 50 MW (e.g., 50 units/year of 1000 kW capacity)

Summary of main capital costs – Modeled system compared to OCSD

OCSD Comparison

Fuel Cell System

, Storage,

Compression,

Modeled System

Compression, Storage, and Dispensing – Assumptions & Methodology

- Two compressors, each operates at 50% of designed flow rate
- Low pressure on-site storage type IV tanks and high/low pressure cascade type IV tanks for refueling
 - Netting analysis, calibrated with ABAQUS model, to determine the tank geometry and the amount of carbon fiber composite needed

	H ₂ Stored	Pressure	CF Composite	Liner Weight	Tank Cost
	(kg)	(bar)	Weight (kg)	(kg)	(\$)
On-site Storage Tank	20 kg	482	293.3	65.3	\$6,548
Cascade Low Pressure Tank	12 kg	482	179.4	46.9	\$4,286
Cascade High Pressure					
Tank	10 kg	875	204.4	35.3	\$4,325

- Hydrogen supply and dispensing
 - 125 kg/day, cascade dispensing with cooling for 700-bar onboard storage
 - Refrigeration unit required for fast fill (0.24 kWh/kg-H₂)

CSD capital cost can be reduced to \$500,000

- H2A model for compressor cost
 - PDC Machines compressors at OCSD were oversized and expensive (150 kW, \$725K compared to a needed 2 x 31 kW units costing \$191K)
 - H2A model includes spare compressor (eliminated in this analysis)
- Storage tank costs provided by SA based on annual 5k production volume
- Refrigeration, dispenser, electrical, control & safety costs derived from H2A
- Total installed capital cost \$498,000or \$1,658/ kW

	# of	Unit Size/	Lifetime,	Uninstalled	Installation	Installed Cost,	
	Units	Description	yr	Cost <i>,</i> \$	Factor	\$	
Compressors	2	31 kW	10	159,300	1.2	191,100	
On-site Storage Tanks	6	20 kg (482 b)	20	39,300	1.3	51,100	
Cascade Pressure Tanks	3	12 kg (482 b)	20	12,800	1.3	16,700	
Cascade Pressure Tanks	2	10 kg (875 b)	20	8,700	1.3	11,200	
Dispenser	1	-	10	53,700	1.2	64,400	
Refrigeration Equipment	1	3.3 tons	15	49,200	1.2	59,000	
Electrical Upgrade	-	480 V	20	28,400	2.2	62,500	
Control and Safety			20	20,300	1.2	24,400	
Piping	-		20	17,000	1	17,000	
Total CapEx				389,000		498,000	

H₂ compression, storage and dispensing capital costs for a system similar to OCSD

The charging station adds ~5 cents to the cost of power

Fuel cell generated power can be sold to recharge electric vehicles

Assumptions

- Number of charging stations:
 - -4 (6 kW) costing \$3,000 each
 - -2 (50 kW) costing \$10,000 each

Availability:

- 330 days, 1240 kWh/day
- Charger Efficiency = 90%
- Total Investment = \$36,800
- Loan Period = 10 years at 6%

Capital Investment	\$36,800			
Loan Payment, \$/year	\$4,	903		
Monitoring, \$/year	\$3,	000		
Labor, \$/year	\$7	50		
Depreciation, \$/year	\$1,280			
Operation & Maintenance, \$/year	\$300			
Desired Rate of Return, %	10%			
Cost of FC Plant Electricity, \$/kWh	\$0.10	\$0.15		
Cost of FC Plant Electricity, \$/year	\$55,565	\$78,071		
Cost of Power to Vehicle, \$/kWh	\$0.145	\$0.200		

Cost of EV charging dominated by power generation cost

- The cost of generated power dominates the cost of power to the Evs
- Labor hours and monitoring adds little to the cost of EV charging

CHP mode: 11-19 cents/kWh LCE cost

- Assumptions
 - Federal tax credit for 300 kW_e facility (H.R. 1424, 2008, expiring in 2017)
 - 100% equity financing at 8% interest rate, IRR 10%.
 - NG price in start-up year: \$5.5 /mmBtu (2014 average industrial price, EIA)
 - Fuel cell stack replaced every 5 years; O&M at 6.5% of direct capital cost
 - Indirect capital cost (site preparation, project contingency, permits, etc) \$180,000

H₂ can be priced at 6.5-9.2 \$/kg depending on the price of electricity

- Increasing H₂ production reduces the price of electricity more rapidly for given levelized cost of energy (electricity, hydrogen and heat)
- For fixed charge of 10.3^a cents/kWh_e, hydrogen can be priced at \$6.5/kg for 125 kg-H₂/d co-production, increasing to \$9.2/kg for 75 kg-H₂/d co-production
- The minimum price of hydrogen varies significantly with location from \$4.3/kg in New England to \$7.5/kg in West South Central because of variability in grid price

The price of vehicle charging and hydrogen can be adjusted to market demands

- Charging station capacity
 - Assume 10 hours of operation per day, 12 kWh/vehicle
 - For 125 kg-H $_2$ /d co-production, facility can charge up to 150 vehicles/day
- For given levelized cost of energy, pricing of electricity and/or hydrogen can be reduced if a portion of the electricity produced is used for EV charging
 - At full charging capacity utilization, price of hydrogen is reduced by ~\$0.8/kg for each \$0.1/kWh premium for EV charging

Summary

System performance

	Pure Electric	Combined Electric and H ₂ Mode	Comments for Performance in Combined Electric and H₂ Mode
Net H ₂ Production (kg/d)	0	125	79 kW _t supplemental fuel to burner
Net Electrical Power (kW _e)	258.1	183.1	5% increase in fuel input to stack
Fuel Utilization (%)	73.0	60.0	Terminal limits of fuel utilization (U_F)
Oxygen Utilization (%)	60	60	Fixed O_2 utilization, variable U_F
Cell Voltage (mV)	768.9	816.4	Higher Nernst potential at lower U_F
Stack DC Gross (kW _e)	300.0	274.9	
Stack Actual Efficiency (%)	51.1	51.1	Stack efficiency does not increase because of higher burner load Lower gross electrical efficiency in spite of
Gross Electrical Efficiency (%)	46.4	42.6	higher cell voltage
H ₂ Production Efficiency (%)	87.3	89.4	
PSA Efficiency (%)		43.0	Efficiencies inclusive of electric power
H ₂ Storage Efficiency (%)		83.9	consumed in PSA and H_2 compressors
Net Electrical Efficiency (%)	46.4	27.6	
Fuel Processor Efficiency (%)	0.0	26.2	
Thermal Efficiency (%)	32.7	23.2	Waste heat used to raise hot water. Lower if steam is raised.

Cost

- ~\$1.2 M direct capital cost, MCFC \$1400/kW, LCE \$0.11/kWh_e

- At \$0.10/kWh_e, hydrogen needs to be priced at > \$6.5/kg
- Hydrogen price can be reduced by ~\$0.8/kg for each \$0.1/kWh premium for EV charging

- 1.Explore strategies to improve the performance of the system in CHP and CHHP modes
- 2.Electrochemical separation and compression of H₂
 - Trade-off between PSA compressor, H₂ recovery, and H₂ compression
- 3. Analyze scenarios to improve the economics of MCFC based tri-generation plants (waterfall chart)
 - Consider larger 1000 and 1500 kW_e MCFC systems
 - Additional revenues from grid stabilization
- 4.Additional calibration and validation of performance and cost models against OCSD data and published Fuel Cell Energy and APCI studies
- 5. Publish and document performance and cost models and results

- Fuel Cell Energy
 - System layout, electrochemical hydrogen separation and compression
 - Fuel utilization limits
 - Performance in CHP and CHHP modes
 - Cost projections
 - Scenario assumptions
- PDC Machines, RIX Industries
 - Costs of compressors at OCSD plant
- Argonne National Laboratory

Ted Bohn (ES), Frank Perrotta (FMS-BS)

- Costs of battery vehicle charging stations
- Availability and charging efficiencies
- Strategic Analysis (SA)
 Brian James
 - Costs of hydrogen storage tanks, pressure swing adsorption (PSA)

Acronyms

Alternating Current

- CHP Combined Heat and Power
- CHHP Combined Heat, Hydrogen and Power
- CSD Compression, Storage and Dispensing
- DC Direct Current
- EBOP Electrical Balance of Plant
- EV Electric Vehicle
- HDS Hydro-Desulfurization
- kWh Kilowatt-hour
- LCE Levelized Cost of Electricity
- LHV Lower Heating Value
- MBOP Mechanical Balance of Plant
- MCFC Molten Carbonate Fuel Cell
- MMBtu Million British Thermal Units
- NG Natural Gas
- OCSD Orange County Sanitation District
- O&M Operation and Maintenance
- PSA Pressure Swing Adsorption
- SA Strategic Analysis
- WGS Water-Gas Shift