

U.S. DEPARTMENT OF

Hydrogen Storage Program Area -Plenary Presentation-

Ned T. Stetson Fuel Cell Technologies Office

2015 Annual Merit Review and Peer Evaluation Meeting June 8 - 12, 2015

Objectives

- By 2020, develop onboard vehicle H₂ storage systems achieving 1.8 kWh/kg (5.5 wt% H₂) and 1.3 kWh/L (40 g H₂/L) at \$10/kWh (\$333/kg H₂ stored) or less.
- By 2020, demonstrate H₂ storage systems in MHE applications achieving 1.7 kWh/L (50 gH₂/L); ability to recharge with 2 kg of H₂ within 2.8 minutes at \$15/kWh (\$500/kg H_{2 stored}) or less.
- Ultimate targets: to develop onboard H₂ storage systems achieving 2.5 kWh/kg (7.5 wt.% H₂) and 2.3 kWh/L (70 g H₂/L) at \$8/kWh (\$266/kg H₂ stored) or less.
- Other specific objectives are in the Hydrogen Storage Section of the MYRD&D Plan.

GOAL: Develop advanced hydrogen storage technologies to enable successful commercialization of hydrogen fuel cell products

Hydrogen Storage Team - Strategy and Barriers

ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 3

Objective: Achieve a driving range >300 miles for full span of light-duty vehicles, while meeting packaging, cost, safety, & performance requirements

FY 2016 Request = \$15.6M

FY 2015 Appropriation = \$15.6M

EMPHASIS

- Close coordination with EERE Offices on carbon fiber composites, including AMO, VTO and BETO
- Focus on cost reduction for high pressure tanks
- Increase materials development efforts focused on materials with characteristics needed to meet onboard storage targets
- Portfolio is balanced between mid- and long term

Current Status of H₂ Storage Technologies

Storage Targets	Gravimetric kWh/kg (kg H ₂ /kg system)	Volumetric kWh/L (kg H ₂ /L system)	Costs \$/kWh (\$/kg H ₂)
2020	1.8 (0.055)	1.3 (0.040)	\$10 (\$333)
Ultimate	2.5 (0.075)	2.3 (0.070)	\$8 (\$266)
Projected H ₂ Storage System Performance (5.6 kg H ₂ usable)	Gravimetric kWh/kg	Volumetric kWh/L	Costs* \$/kWh
700 bar compressed (Type IV)	1.5	0.8	17
350 bar compressed (Type IV)	1.8	0.6	13
Metal Hydride (NaAlH ₄ /Ti)	0.4	0.4	43
Sorbent (MOF-5, 100 bar) MATI, LN2 cooling [HexCell, flow-through cooling]	1.2 [1.2]	0.7 [0.6]	16 [15]
Chemical Hydrogen Storage (AB-50 wt.%) [AlH ₃ – 60 wt.%]	1.5 [1.1]	1.4 [1.2]	17 [22]

Full comprehensive sets of hydrogen storage targets can be found in the Program's Multi-year Research, Development and Demonstration Plan: <u>http://energy.gov/sites/p</u> rod/files/2014/03/f12/st orage.pdf

- 700 bar and 350 bar compressed H₂ system projections based on 2013 Program Record #13010
- Materials-based system projections from Hydrogen Storage Engineering Center of Excellence (5/2015)
- * Projected to 500,000 units / year

Physical Storage

700-Bar Compressed H₂ System Cost Analysis

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office
 7

Preliminary analyses project more than 20% reduction in cost from 2013 baseline

Accomplishments - Project Highlights

Low-cost CF precursors [ORNL/VT]

- Approach: Melt-spinning process
- Goal: ~30% lower cost than conventional PAN precursor fibers
- Based on prior BASF technology

PAN precursor filaments produced through melt-spinning process

Low-cost alternative fibers to CF [PPG/Hexagon Lincoln/PNNL]

- Approach: Ultra-high strength fiber glass
- Goal: New fiber glass with tensile strength exceeding Toray T700 CF at ~50% of cost
- Novel fiber glass manufacturing process
- Characterizing stress rupture properties to determine required safety factor

ST093

Reducing cost of composites for use in H₂ storage vessels

Accomplishments - Project Highlights

Alternative resin and manufacturing [Materia/MSU/Spencer Composites]

- Approach: low-viscosity, high-toughness resin with VARTM manufacturing process
- Goal: 35% reduction in composite costs
- Potential for optimized winding patterns with fewer defects

Thick panel produced through infusion process with less than 1% voids by volume

Optimized cost and performance of COPVs [CTD/ORNL/Adherent Tech.]

- Approach: Graded construction utilizing thick wall effect
- Goal: demonstrate potential for 10-25% lower cost through graded-construction approach
- Identified Panex 35 [™] as potential candidate fiber, evaluating fibers from ORNL

Potential cost reduction of 1-30%

	T700	Price	Range =	\$13 - \$20
Low Cost	Fiber	Price	Range =	\$7 - \$12

50% T700 Toray/50% Low Cost Fiber				
		Low Cost Fiber (\$/lb)		(\$/Ib)
		\$ 7.00	\$10.00	\$12.00
T700	\$13.00	20.4%	9.1%	1.6%
Toray	\$15.00	24.3%	14.5%	7.9%
(\$/lb)	\$20.00	30.6%	23.2%	18.3%

	60% T700 Toray/40% Low Cost Fiber				
		Low Cost Fiber (\$/lb)			
			\$ 7.00	\$10.00	\$12.00
	T700	\$13.00	15.9%	6.9%	0.8%
	Toray	\$15.00	19.1%	11.2%	6.0%
	(\$/lb)	\$20.00	24.3%	18.3%	14.4%

ST114

ST110

Reducing cost of H₂ storage vessels through alternative manufacturing

Accomplishments - Project Highlights

Alternative materials for BOP [SNL/Hy-Performance Materials]

- Approach: Screening based on fatigue stress and computational material design
- Goal: Reductions in BOP of up to 50% in weight and 35% in cost
- Established baseline for strain-hardened type 316L SS

Fatigue life comparisons: ambient and low-T,

as-annealed, pre-charged and in H₂

New Project: Conformable 700 bar H₂ Storage Systems [CTE/HECR/UT]

- Approach: Development of an over-braided, coiled pressure vessel for 700 bar H₂ storage
- Goal: Surpass DOE system targets for specific energy (3.7 kWh/kg) and cost (< \$10/kWh)
- Using proven technology for self-contained breathing apparatuses as design basis
- Achieves efficient onboard vehicle packaging through use of a shaped corrugated core overbraided with aramid fiber for strength

Alternative materials for BOP and conformable designs

Cold-compressed H₂ storage [PNNL/Ford/Hexagon Lincoln/AOC/Toray]

- Approach: Synergistically consider pressure vessel and operating conditions
- Goal: 30% reduction in system cost over 2013 baseline cost for 700 bar system
- Targeting 500 bar and 200 K operation
- Identified alternative, lower cost resin being considered for commercial use by a PV manufacturer

~50% reduction in tank mass possible with 500 bar and 200 K operation

	Current H ₂ Tank	Enhanced H₂ Tank
Operating	700 bar	500 bar
Conditions	at 15°C	at -73°C
H ₂ Density	40 g/l	42 g/l
Tank Mass	93.6 kg	48.2 kg

Cryo-compressed H₂ storage [LLNL/BMW/Linde/Spencer]

- Approach: Develop a thin-lined, pressure capable, cryogenic vessel
- Goal: Demonstrate 3 kWh/kg and 1.7 kWh/L system capacities at 700 bar
- Design incorporates a type III pressure vessel within a MLVSI jacket
- Installed high-efficiency, high-throughput liquid cryo-pump

Cryo-compressed dispensing station at LLNL

Cold and cryo-compressed H₂ storage for improved performance

Cross-cutting Effort: Institute for Advanced Composites Manufacturing Innovations

- President Obama announced the selection on January 9, 2015 in Tennessee.
- Part of the National Network of Manufacturing Innovation
- <u>Managed through the EERE Advanced</u> <u>Manufacturing Office</u>
- IACMI is currently negotiating the Cooperative Agreement with DOE.

Materials Based

Accomplishments – H₂ Storage Engineering CoE

ENERGY Energy Efficiency & Renewable Energy **Fuel Cell Technologies Office | 14**

Designed and built two sorbent prototype systems for evaluation:

Posted system models online for research community use:

- MH acceptability envelope
- MH finite element model
- MH framework model
- Physical H₂ framework models

- Chemical hydrogen framework model
- Adsorption framework model
- Adsorption finite element model (coming)
- Tank volume/cost model

Prototype sorbent systems being evaluated and validated system models released

Highlights from 6 years of the HSECoE:

- Baseline system performance established, based on current materials, for reversible metal hydrides, chemical hydrogen storage materials, and hydrogen sorbents
- Integrated framework developed to project materials-based system performance in fuel cell electric vehicle application available to the R&D community
- Validated performance of models through empirical testing available online
- "Reverse engineered" from systems to materials to predict required material characteristics needed for systems to meet DOE system targets
- Technology advancements/developments (non-exhaustive list):
 - Integrated framework model with vehicle, fuel cell and H₂ storage modules (NREL/Ford/UTRC)
 - Microchannel catalytic burner received "Transformational Idea" award at 2014 FLoW competition and is being commercialized by Micro-Steel (OSU)
 - Developed and demonstrated efficiency NH₃ and diborane scrubbers (LANL/UTRC)
 - Developed compact, efficient novel gas/liquid separator (UTRC)
 - Developed compact microchannel heat exchanger for use in H₂ storage systems (OSU)
 - Developed flow-through sorbent system design (SRNL/UQTR)
 - Demonstrated ability to increase volumetric efficiency through sorbent densification (Ford)

HSECoE is in the last year of its multi-year effort

Improved H₂ sorbent development [LBNL/NIST/GM]

- Approach: novel MOFs with open metal centers with stronger binding
- Goal: MOFs with significant capacity at ambient temperature and 100 bar or less
- Developed new Ni₂ (*m*-dobdc) with volumetric performance exceeding MOF-5

Sorption isotherms for Ni₂(*m*-dobdc), and MOF-5

Accurate and verified sorption results [NREL/H₂ Tech Consulting]

- Approach: Standardized practices and methods for accurate, and reliable reported sorption data
- Goal: Develop and disseminate standard method for reporting sorption data
- Maintain calibrated laboratory for verifying reported sorption results

Establishing standard on how to refer to sorption data

ST103

Developing improved H₂ sorbents and standard methods

Low-cost methods for α -alane production [SRNL]

- Approach: Develop low-cost, efficient processes for alane synthesis
- Demonstrated regeneration of electrolyte in >80% yields
- Reduction of dendrite growth a current focus
- Developing improved recrystallization processes

$\alpha\mbox{-alane}$ recrystallized from alane adduct

Low-cost methods for α -alane production [Ardica/SRI]

- Approach: Develop fluidized electrochemical process for low-cost α-alane production
- Goal: Reduce alane production costs to less than \$10/kg
- Detailed cost analyses identify areas that need attention
- Demonstrated Al particle electrochemical cells
 Electrochemical cell with Al particles

ST063

Low-cost α -alane production for commercial applications

Improved performance for $Mg(BH_a)_2$ [LLNL/SNL]

- Approach: Combined computational and empirical effort to identify ways to improve performance
- Goal: Develop flexible, validated, multi-scale model and use to develop practical material that satisfies DOE 2020 targets.
- Developed phase-fraction prediction framework

Understanding chemical, transport, and phase behavior

Boron-based H₂ storage materials [HRL/SNL/UMSL]

- Approach: Develop novel H₂ storage materials based on multi-metal borohydrides and lithiated boranes
- Goal: Develop reversible hydrogen storage materials with potential for >10 wt.% capacity
- Synthesized Mg/Mn ternary borides for investigation
- Calculated Li exchange enthalpies for boron frameworks

XRD confirming single-phase Mg/Mn boride

ST117

Boron-based, high-capacity H₂ storage materials

High-Capacity & Low-Cost Hydrogen-Storage Sorbents for Automotive Applications [Texas A&M University]

- Objective: Develop metal-organic framework (MOF) sorbents with capacities exceeding the conventional storage limit per unit surface area
- 2nd Objective: Improve system performance through enhanced thermal conductivity of sorbent/carbon composites

Goal is to achieve higher H₂ uptake trough improved H₂ sorbents interactions

Hydrogen Adsorbents with High Volumetric Density: New Materials and System Projections [University of Michigan]

- Objective: Develop high volumetric adsorbents that also have high gravimetric capacities
- Approach: Investigate "best-in-class" sorbents identified through screening of reported structures in the Cambridge Structure Database Goal is to achieve simultaneously higher volumetric and gravimetric density

New MOF development targeting high volumetric capacities

New Materials Development Projects

Design and Synthesis of Materials with High-Capacities for Hydrogen Physisorption [California Institute of Technology]

- Objective: Develop high performing H₂ adsorbents prepared from either graphene or exfoliated graphite.
- Goal: A hydrogen storage capacity of ≥ 11 wt.%, and near-constant isosteric heat of adsorption

Functionalize graphene for high packing density H₂ storage on the surface

ST120

High-capacity Hydrogen-Storage Systems via Mechanochemistry [Ames Laboratory]

- Objective: Develop low-cost, reversible, highperformance H₂ storage materials
 - (1) Si-borohydride hypersalts
 - (2) borohydride/graphene composites.
- Approach: Computational modeling to guide mechanochemical processing synthetic methods

Goal is to develop Novel High H-capacity Si-based

Novel reversible, high-capacity H₂ *storage materials development*

Low-cost, Metal Hydride-based H₂ Storage System for Forklift Applications (SBIR Phase II) [Hawaii Hydrogen Carriers LLC/SNL/Hydrogenics] [ST095]

- Objective: Develop and demonstrate a low-pressure, high-density MH-based H₂ storage system for forklift applications
- Low-pressure storage (max charging pressure =70 bar) addresses the high infrastructure costs associated with high-pressure storage onboard forklifts
- MH unit designed, built and integrated into a Hydrogenics fuel cell unit for forklift applications
- System currently undergoing testing at the Applied Research Center in Aiken, SC
- Demonstrations planned at commercial warehouse operations in SC

MH reservoir

Integrated into fuel cell unit

Installed on forklift

Low-pressure, high-density H₂ *storage for material handling equipment*

- Workshop Goals:
 - Disseminate outcomes from HSECoE on system engineering, modeling and current performance
 - Disseminate results of "reverse engineering" from system performance to material requirements
 - Discuss strategies and needs for advanced materials development to meet challenging onboard H₂ storage targets
- Five breakout session held: reversible metal hydrides, sorbents, chemical hydrogen storage, niche applications, & bridging fundamental and applied research
- **Over 75 participants:** representing industry, academia and national labs
- Hosted by NREL: January 27-28, 2015
- Workshop Information on website:
 - Agenda and attendee list
 - Public versions of meeting presentations
 - Breakout session report-out presentations
 - <u>http://energy.gov/eere/fuelcells/downloads/do</u>
 <u>e-materials-based-hydrogen-storage-summit-</u>
 <u>defining-pathways-onboard</u>

Information exchange with H₂ storage materials researchers

Collaborations

Applied R&D is coordinated among national and international organizations

Low-cost Compressed H₂ Systems:

- Launched IACMI, a new CEMI Institute compressed gas storage one of three focus areas
- Initiated new project on conformable high-pressure hydrogen storage
- Updating cost record with recent validated accomplishments from storage activities

Hydrogen Storage Engineering Center of Excellence:

- Phase III evaluation of 2 prototype sorbent systems underway
- Validated performance models posted for use by research community
- Disseminating results from "reverse engineering" from system to materials performance

Advanced Hydrogen Storage

- Held materials-based H₂ Storage Summit
- Announced new materials projects, awards now being finalized
- Planning consortium for advanced H₂ storage materials

Contacts

Ned Stetson – Program Manager 202-586-9995 ned.stetson@ee.doe.gov			
Grace Ordaz	Jesse Adams		
202-586-8350	720-356-1421		
grace.ordaz@ee.doe.gov	jesse.adams@ee.doe.gov		
Channing Ahn	Katie Randolph		
202-586-9490	720-356-1759		
channing.ahn@ee.doe.gov	katie.randolph@ee.doe.gov		
Vanessa Trejos	John Gangloff		
Support contractor	ORISE Fellow		
202-586-5153	202-586-7009		
vanessa.trejos@ee.doe.gov	john.gangloff@ee.doe.gov		

http://energy.gov/eere/fuelcells/fuel-cell-technologies-office

Fellowship opportunity in hydrogen storage materials is now available! *For more info, visit :* https://www.zintellect.com/Posting/Details/1079