Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

Mike Veenstra (PI), Jun Yang, Chunchuan Xu, and Justin Purewal

Manuela Gaab, Lena Arnold, and Ulrich Müller

Don Siegel and Yang Ming

June 9, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information

While this presentation is believed to contain correct information, Ford Motor Company (Ford) does not expressly or impliedly warrant, nor assume any responsibility, for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe the rights of third parties. Reference to any commercial product or process does not constitute its endorsement. This presentation does not provide financial, safety, medical, consumer product, or public policy advice or recommendation. Readers should independently replicate all experiments, calculations, and results. The views and opinions expressed are of the authors and do not necessarily reflect those of Ford. This disclaimer may not be removed, altered, superseded or modified without prior Ford permission.

Overview

Phase 2

Timeline

- Project Start: February 2009
- Project End: June 2015

Budget

HSECoE

- Total Project Value: \$2,783K
 - Cost Share: \$643K
 - DOE Share: \$2,140K
- DOE Funding Spent*: \$2,045K
 *as of 3/31/15

Barriers

- End of Phase 1 All DOE System Targets** Baseline Gravimetric Density 100% Min. Delivery Temp. Fill Time (5kg H) Max Delivery Temp. Volumetric Density Start Time to Full Flow Min. Delivery Pressure 20°C) Gravimetric Density Transient Respons Max. Operating Temp. System Cost Fuel Purity Min. Operating Temp **http://www1.eere.energy.gov/hydroge nandfuelcells/storage/pdfs/targets______ Max. Delivery Preonboard hydro storage.pdf Loss of Useable H2 Min. Full Flow R Partners Fuel Cos System Cost Cycle Life (1/4 Volumetric Densit Project Lead: Ford MATI Adsorbent System Example
- Subcontractors: BASF and U. Michigan
- Center Partners:

Relevance: Technical

Ford

Three Technical Tasks Contribute to the Overall HSECoE Mission

 Task 1: Develop dynamic vehicle parameter model that interfaces with diverse storage system concepts

Task 2: Development of robust cost projections for storage system concepts

 Task 3: Devise and develop system-focused strategies for processing and packing framework-based sorbent hydrogen storage media

 Image: Storage media

Relevance: Organizational

HSECOE

Ford project has many roles and responsibilities within the DoE Program Management HSECoE at both the executive and working levels. N. Stetson J. Adams R. Bowman **Center Coordinating Council OEM Perspective Role** (M. Veenstra) D. Anton, Center Director T. Motyka, Assistant Director Provided an automotive perspective **DOE Program Liaisons** Technology Area Leads Acted as liaison to USDRIVE tech teams OEMs Independent Projects Performance Cost & M. Cai. GM Energy Analysis Integrated fuel cell model for HSECoE framework M. Veenstra, Ford T. Motyka M. Thornton Engaged in system trade-offs and cost analysis Materials Operating Hydrogen Safety System Architects Requirements J. Khalil Coordinated FMEA and design verification plan E. Rönnebro MH System Transport Phenomena T. Motyka B. Hardy System Architect Role (D. Siegel) External Communications CH System Integrated Storage T. Motyka T. Semelsberger System/Power Plant Modeling Coordinated adsorbent team design activities B. van Hassel A System Communicate technical status and gaps Leads adsorbent Enabling Technologies D. Siegel K. Simmons Developed SMART milestones and GANTT chart MOR team Subscale Prototype Lead adsorbent Leads powerplant Construction, Testing, & Organized regular meetings with adsorbent team Evaluation modeling team system architect T. Semelsberger Consolidated progression towards system targets Red = Core contribution areas Green= Ancillary contribution areas of HSECoE

Ford/BASF/UM team provides many important roles in the overall HSECoE

Approach: AMR Comments and Responses

Many positive comments received with a few general recommendations

2015 DOE Annual Merit Review Meeting

OEM perspective on adsorbent systems

System Comparison for Phase 3 (useable 5.6 kg)

	SRNL	Pacific Northwest
--	------	-------------------

Internal HX and Media:	HexCell + powder MOF-5	MATI + 0.32 g/cc MOF-5 pucks	700 bar* Compressed H ₂	ADVANTANGES
System Mass (kg)	161	159	128	✓ 7x lower pressure✓ Lower tank cost
System Volume (L)	304	263	224	 Lower infrastructure capital cost
Estimate System Cost at 500K units	\$2,720**	\$2,897**	\$3,134	 Opportunity for fuel cell thermal sink
Gravimetric Capacity (g-H ₂ /g-system)	3.5 %	3.5%	4.4 %	CHALLENGES
Volumetric Capacity (g-H ₂ /L-system)	18.5 g/l	21.3 g/l	25.0 g/l	 Volumetric capacity Cryogenic certification
 Full tank: P = 100 bar, T Empty tank: P = ~5 bar, ⁻ Single Aluminum (6061-1) 	= 80 K T = ~140 K T6) Type 1		*2013 AMR references ANL Project ID: ST001 SA Project ID: ST100	 Insulation robustness Liquid hydrogen

- Single, Aluminum (6061-T6) Type 1
- LN₂ vessel wall chilling channels **PNNL PI for cost analysis

HSECoE

Adsorbent systems offer advantages using low pressure with challenges

pathway penalties

Approach: Phase 3 SMART Milestones and Tasks

Component	Partner	Proposed SMART Milestones for Phase 3	Due Date
Adsorbent Media	Ford/UM/BASF see 2014 AMR	Conduct a scale-up of the MOF-5 manufacturing process to deliver > 9 kg of material while maintaining performance, as measured by surface area and particle size, to within 10% of lab-scale procedure.	12/31/2013
Adsorbent Media	Ford/UM/BASF	Evaluate MOF-5 degradation beyond 300 cycles based on maximum allowable impurity levels as stated in SAE J2719 and report on the ability to mitigate to less than 10%.	9/30/2014
Adsorbent Media	Ford/UM/BASF	Complete the failure mode and effects analysis (FMEA) associated with real-world operating conditions for a MOF-5-based system, for both HexCell and MATI concepts <u>based on the Phase 3 test results</u> . Report on the ability to <u>reduce the risk priority numbers (RPN)</u> from the phase 2 peak/mean and identify key failure modes.	6/30/2015
System Modeling	NREL/SRNL/ PNNL/Ford/ UTRC	Update the cryo-adsorbent system model with Phase 3 performance data, integrate into the framework; document and <u>release models to</u> <u>the public.</u>	6/30/2015
Additiona	al task:	Explore approaches to maximize the MOF-5 "real-world" material properties: advance thermal conductivity and compaction effects.	

Project approach based on collaborative HSECoE SMART milestones

2015 DOE Annual Merit Review Meeting

Milestone Task: Evaluate MOF-5 degradation beyond 300 cycles based on maximum allowable impurity levels as stated in SAE J2719 and report on the ability to mitigate to less than 10%.

SAE 12719 Constituent	Chemical	Limite		
Hydrogen fuel index	Ha	> 99.97%		/ Test Gas
Total allowable non-hydrogen, non-helium, non-particulate constituents listed below		100	inpuny	
Acceptable limit of each in	dividual con	stituent	Test Gas Levels	Mixture Combinations
Water	H_20	5 ppm	5 to 10 ppm	Test Gas Mixture 1
Total hydrocarbons	C ₁	2 ppm	2 ppm	Test Gas Mixture 2
Oxygen	O ₂	5 ppm	5 ppm	Test Gas Mixture 2
Helium	He	300 ppm	500 ppm	Test Gas Mixture 2
Nitrogen, Argon	N ₂ , Ar	100 ppm	100 ppm	Test Gas Mixture 2
Carbon dioxide	CO ₂	2 ppm	5 ppm	Test Gas Mixture 2
Carbon monoxide	CO	0.2 ppm	2 ppm	Test Gas Mixture 2
Total sulfur	S	0.004 ppm	1 ppm	Test Gas Mixture 3
Formaldehyde	НСНО	0.01 ppm	n/a	Not in Gas Mixture
Formic acid	НСООН	0.2 ppm	n/a	Not in Gas Mixture
Ammonia	NH_3	0.1 ppm	5 to 10 ppm	Test Gas Mixture 4
Total halogenates		0.05 ppm	5 to 10 ppm	Test Gas Mixture 5
Particulate Concentration		1 mg/kg		

See SAE J2719 for original reference

HSECoE

Impurities were tested in separate mixtures to evaluate the impact

Milestone Task: Evaluate MOF-5 degradation beyond 300 cycles based on maximum allowable impurity levels as stated in SAE J2719 and report on the ability to mitigate to less than 10%.

2015 DOE Annual Merit Review Meeting

Milestone Task: Evaluate MOF-5 degradation beyond 300 cycles based on maximum allowable impurity levels as stated in SAE J2719 and report on the ability to mitigate to less than 10%.

Extreme sulfur impurity cycling only resulted in negligible change

2015 DOE Annual Merit Review Meeting

Milestone Task: Evaluate MOF-5 degradation beyond 300 cycles based on maximum allowable impurity levels as stated in SAE J2719 and report on the ability to mitigate to less than 10%.

Impurity cycle testing results were confirmed with XRD and FTIR

2015 DOE Annual Merit Review Meeting

Milestone Task: Evaluate MOF-5 degradation beyond 300 cycles based on maximum allowable impurity levels as stated in SAE J2719 and report on the ability to mitigate to less than 10%.

MOF-5 robust to J2719 impurity levels cycled at low temperature (77 K)

2015 DOE Annual Merit Review Meeting

Additional evaluation of potential MOF-5 degradation based on long term static exposure to impurity levels as stated in SAE J2719.

MOF-5 exposed to impurity gas mixtures for 1 week had no degradation

2015 DOE Annual Merit Review Meeting

Progress: MOF-5 Robustness to Humidity

Additional evaluation of MOF-5 based on static exposure to humidity levels and time.

MOF-5 is stable under moderate humid conditions and exposure time

2015 DOE Annual Merit Review Meeting

Progress: FMEA - Failure Mode Reduction

FMEA = Failure Mode and Effects Analysis (industry tool per SAE J1739)

- o Identifies and evaluates the potential failure of a product and its effects
- Documents the risk and helps prioritize the key actions to reduce failures

Example actions during phase 3 for reducing the Risk Priority Number (RPN)

- 1. Completed testing to reduce occurrence ratings associated with hydrogen impurity concerns
- 2. Assessed tank robustness with adsorbent material and cryogenic operating conditions
- 3. Conducted thermal management evaluation testing to assess performance in adsorbent bed
- 4. Performed system testing to assess material variability and effects of non-homogenous bed Phase 2 - FMEA Analysis for Adsorbent System
 Phase 3 - FMEA Analysis on Adsorbent System
 Phase 3 - FMEA Analysis on Adsorbent System

Progress: FMEA - Failure Mode Reduction

Top RPN Items based on the Phase 3 FMEA assessment (200):

Potential Cause	Failure Mode (RPN)	Comments
(1) Material release rate insufficient due to non- homogenous materials at end of life	Hydrogen supply unable to achieve full flow rate (288) Storage system only accepts partial fill (252) Storage system on-board efficiency < 90% (252) System only supplies partial capacity (252)	Confirmed performance was stable after material cycle and Phase 3 system testing. Further key life tests should be considered.
(2) Component interfaces and connections between BOP parts leak at cold temperatures	System exceeds allowable external leak rate limit. (280)	Further development of cryogenic sealing solutions should be considered.
(3) Material uptake insufficient rate due to performance of thermal isolation system such as vacuum stability	Loss of useable hydrogen is greater than .05 [g/hr]/kg H2 (240) System only supplies partial capacity (assumes complete fill) - from initial use through lifetime (1,500 cycles) (210)	Further reliability assessment of vacuum system integrity over the lifetime should be considered.
(4) Material release rate insufficient due degradation in heat transfer in bed and to the thermal management system at end of life	System only supplies partial capacity (assumes complete fill) - from initial use through lifetime (1,500 cycles) (210)	Confirmed performance of thermal management during Phase 3 system testing. Further key life tests should be considered.

FMEA process supports the key outcome for the HSECoE:

Develop and provide material-based system designs and gap analysis for consideration in further research efforts.

Explore approaches to maximize material properties by advancement in compaction.

MOF-5 compaction was highly repeatability and formable without binders

2015 DOE Annual Merit Review Meeting

StDev

(g/cc)

Explore approaches to maximize material properties by advancement in compaction.

average density of 0.41g/cc (density: red > green > blue) No mesh

HSECoE

Divided the pellet cross section into 13 small regions in CT scan to calculate the average density in the region

Density fluctuation:

[p(region)-p(pellet_avg)]/p(pellet_avg)x100%

Compaction density variation improves significantly with powder sieve

Explore approaches to maximize material properties by advancement in compaction.

Additional compaction techniques can offer further advantages

2015 DOE Annual Merit Review Meeting

Explore approaches to maximize material properties by advancement in thermal conductivity.

Improved thermal conductivity

HSECoE

Additional thermal conduction additives can offer further advantages

Summary: Phase 3 SMART Milestones and Tasks

SMART Milestone Tasks	<u>Status</u>
Conduct a scale-up of the MOF-5 manufacturing process > 9 kg	 Delivered 9.3 kg of MOF-5 for Phase 3 to HSECoE partners within 10% of lab-scale synthesis material
Evaluate MOF-5 degradation cycles using impurity levels as stated in SAE J2719	 Completed impurity gas cycle testing that indicate low or no degradation from the exposure.
Complete the failure mode and effects analysis (FMEA) based on the Phase 3	 FMEA action items have been updated and reduced the risk priority numbers (RPN) from phase 2 values
Support system model release and validation with Phase 3 performance results	 Supported the Simulink[®] framework release and model testing through development in the modeling group
Additional Tasks	<u>Status</u>
Consider additional potential improvement for MOF-5 and/or other adsorbents	 Provided a further OEM outlook for the possibility of an on-board adsorbent system
Improved densification	 Demonstrated improvement in puck density variation using filtering techniques and performance.
Enhance thermal conductivity	 Developed alternative materials and approaches to increase thermal conductivity beyond ENG mixtures

□ Ensure a successful completion to the HSECoE project including finalizing material research, system cost studies, modeling validation, and FMEA.

Expected documentation to publish prior to completion:

- ➤ MOF-5 robustness J2719 impurity cycle testing techniques and results
- ➤ Molecular scale water insertion mechanisms in MOF-5
- Neutron and X-ray imaging studies of MOF-5 kinetics and tomography
- HSECoE adsorbent system final report and material targets

Croccolor Bass The Chamical Cargary

Progress: Significant Project Publications

- 1. J. Yang, A. Sudik, C. Wolverton, and D. J. Siegel, *High capacity hydrogen storage materials: Attributes for automotive applications and techniques for materials discovery*, Chemical Society Reviews **39**, 656 (2010).
- 2. J. Purewal, D. Liu, J. Yang, A. Sudik, D. J. Siegel, S. Maurer, and U. Muller, *Increased volumetric hydrogen uptake in MOF-5 by powder densification*. International Journal of Hydrogen Energy **37**, 2723 (2012).
- 3. D. Liu, J. J. Purewal, J. Yang, A. Sudik, S. Maurer, U. Mueller, J. Ni, and D. J. Siegel, *MOF-5 Composites Exhibiting Improved Thermal Conductivity*. International Journal of Hydrogen Energy **37**, 6109 (2012).
- 4. J. Purewal, D. Liu, A. Sudik, M. Veenstra, J. Yang, S. Maurer, U. Muller, and D. J. Siegel, *Improved Hydrogen Storage and Thermal Conductivity in High-Density MOF-5 Composites*, Journal of Physical Chemistry C, **116**, 20199 (2012) DOI:10.1021/jp305524f
- 5. J. Pasini, B. Van Hassel, D. Mosher, and M. Veenstra, System Modeling Methodology and Analyses for Materials-based Hydrogen Storage, Int. J. Hydrogen Energy vol. 37, pp. 2874-2884, 2012.
- C. Xu, J. Yang, M. Veenstra, A. Sudik, J. J. Purewal, Y. Ming, B. J. Hardy, J. Warner, S. Maurer, U. Mueller, and D. J. Siegel, *Hydrogen Permeation and Diffusion in Densified MOF-5 Pellets*, International Journal of Hydrogen Energy, **38**, 3268 (2013).
 DOI:10.1016/j.ijhydene.2012.12.096
- 7. M. Thornton, A. Brooker, J. Cosgrove, M. Veenstra, and J.M. Pasini. Development of a Vehicle-Level Simulation Model for Evaluating the Trade-off between Various Advanced On-board Hydrogen Storage Technologies for Fuel Cell Vehicles. SAE 2012-01-1227, 2012.
- 8. J. Goldsmith, A. G. Wong-Foy, M. J. Cafarella, and D. J. Siegel, *Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: Opportunities and Challenges*, Chemistry of Materials **25**, 3373 (2013). DOI: 10.1021/cm401978e
- Y. Ming, J. Purewal, D. Liu, A. Sudik, C. Xu, J. Yang, M. Veenstra, K. Rodes, R. Soltis, J. Warner, M. Gaab, U. Muller, and D. J. Siegel, *Thermophysical Properties of MOF-5 Powders*, Microporous and Mesoporous Materials 185, 235 (2014). DOI: 10.1016/j.micromeso.2013.11.015
- 10. Y. Ming, H. Chi, R. Blaser, C. Xu, J. Yang, M. Veenstra, M. Gaab, U. Müller, C. Uher, D. J. Siegel, *Anisotropic Thermal Transport in MOF-5 Composites*, International Journal of Heat and Mass Transfer, **82**, 250 (2015). DOI: 10.1016/j.ijheatmasstransfer.2014.11.053
- Y. Ming, J. Purewal, J. Yang, C. Xu, R. Soltis, J. Warner M. Veenstra, M. Gaab, U. Muller, and D. J. Siegel, *Kinetic Stability of MOF-5 in Humid Environments: Impact of Powder Densification, Humidity Level, and Exposure Time, Langmuir*, **2015**, *31* (17), pp 4988–4995, **DOI:** 10.1021/acs.langmuir.5b00833

Collaborations: HSECoE Partners

- SRNL (federal lab collaborator): team lead for sorbent (bed) transport phenomena, adsorbent system modeling, and center management
- Universite du Quebec a Trois-Rivieres (university collaborator): adsorption system test bench and MOF-5 isotherm validation
- GM (industrial collaborator): sorbent materials operating parameters, sorbent system modeling, and helical coil heat exchanger development
- Oregon State University (university collaborator): development of microchannel internal bed heat exchanger and combustors
- Hexagon Lincoln (industrial collaborator): pressure vessel development for hydrogen storage system concepts
- PNNL (federal lab collaborator): team lead for cost modeling, bill of materials, and materials operating requirements
- UTRC (industrial collaborator): material particulate testing, MOF-5 thermal conductivity measurements, and on-board system modeling
- NREL (federal lab collaborator): vehicle level modeling, wells-to-wheels analysis, MOF-5 isotherm validation, and low temperature isotherms
- JPL (federal lab collaborator): insulation development and cryogenic parameter evaluation

Interactions include monthly team meetings (adsorbent system, coordinating counsel, and system modeling), regular data and information exchanges, and <u>eleven</u> HSECoE face-to-face meetings

Technical Back-up Slides

General FMEA Overview and Approach

The FMEA is based on the required system functions from the technical targets.

Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles ^a (updated January 2015)			
Storage Parameter	Units	2020	Ultimate
System Gravimetric Capacity: Usable, specific-energy from H ₂ (net useful energy/max system mass) ^b	kWh/kg (kg H ₂ /kg system)	1.8 (0.055)	2.5 (0.075)
System Volumetric Capacity: Usable energy density from H ₂ (net useful energy/max system volume) ^b	kWh/L (kg H ₂ /L system)	1.3 (0.040)	2.3 (0.070)
Storage System Cost :	\$/kWh net	10	8
• Fuel cost ^c	(\$/kg H ₂) \$/gge at pump	333 2-4	266 2-4
Durability/Operability: • Operating ambient temperature • Min/max delivery temperature • Operational cycle life (1/4 tank to full) • Min delivery pressure from storage system • Max delivery pressure from storage system • Onboard Efficiency ^e • "Well" to Powerplant Efficiency ^e • Charging / Discharging Rates: • System fill time (5 kg) • Minimum full flow rate • Start time to full flow (20°C) • Start time to full flow (-20°C) • Transient response at operating temperature 10%–90% and 90%–0%	PC PC Cycles bar (abs) bar (abs) % % min (kg H ₂ /min) (g/s)/kW S S S	-40/60 (sun) -40/85 1500 5 12 90 60 3.3 (1.5) 0.02 5 15 0.75	-40/60 (sun) -40/85 1500 5 12 90 60 2.5 (2.0) 0.02 5 15 0.75
Fuel Quality (H ₂ from storage) f :	% H ₂	SAE J2719 and IS (99.97% (O/PDTS 14687-2 dry basis)
Environmental Health & Safety: • Permeation & leakage ^g • Toxicity • Safety	-	Meets or exceeds a	pplicable standards
Loss of useable H ₂ ^h	(g/h)/kg H ₂ stored	0.05	0.05

Cost of Ownership (Provide a competitive system)

Accept Fuel (Fill storage system)

Deliver Fuel (Supply H₂ from storage system)

Store Fuel (Manage H₂ in the system)

General FMEA Overview and Approach

ocverity		
Effect	Ranking	
Hazardous without warning	10	
Hazardous with warning	9	
Very High	8	
High	7	
Moderate	6	
Low	5	
Very Low	4	
Minor	3	
Very Minor	2	
None	1	

Severity

X Occurrence

Χ

Probability of Failure	Ranking
Very High:	10
Failures	9
High:	8
Frequent	7
Moderate:	6
Failures	5
	4
Low:	3
Few Failures	2
Remote: Failure is Unlikely	1

Detection =

Likelihood of Detection	Ranking
Absolute Uncertainty	10
Very Remote	9
Remote	8
Very Low	7
Low	6
Moderate	5
Moderately High	4
High	3
Very High	2
Almost Certain	1

Risk Priority Number

