2015 DOE Hydrogen and Fuel Cells Program Review

Hydrogen Storage in Metal-Organic Frameworks

P. I. Jeffrey Long

Lawrence Berkeley Nat. Lab., University of California, Berkeley Nat. Inst. of Standards and Technology, General Motors Co. June 10, 2015

Project ID #: ST103

This presentation does not contain any proprietary, confidential, or otherwise restricted information

+

Overview

Timeline

□ Start: April 2012

□ Finish: May 2015

Budget

- □ Total project funding
 - DOE share: \$2,100k
 - Contractor share: \$525k
- □ DOE funding spent to date*:

– \$1,778k

Barriers Addressed

□ A. System Weight and Volume

Partners

- □ LBNL: synthesis and modeling
- □ NIST: neutron diffraction
- □ GM: high-pressure adsorption (funding ended FY14)

□ Project lead: Jeffrey Long (LBNL)

*as of 3/31/15

Relevance

Project objectives

- Research and development of onboard systems that allow for a driving range greater than 300 miles.
- Materials sought with the potential for meeting the DOE targets of reversible uptake:
 - 2020 targets: 5.5 % H_2 by mass, volumetric capacity of 40 g/L
 - "ultimate full fleet" targets: 7.5 % H₂ by mass, 70 g/L.
- Synthesize new metal-organic frameworks capable of achieving the -15 to -20 kJ/mol adsorption enthalpy required for use as hydrogen storage materials operating under 100 bar at ambient temperatures

Approach

- Task 1: Synthesis of Metal-Organic Frameworks(Jeffrey Long-LBNL)
- **Task 2:** Characterization of Framework-H₂ Interactions (Craig Brown-NIST)
- **Task 3:** First-Principles Calculations of Hydrogen Binding Enthalpies (Martin Head-Gordon-LBNL)
- **Task 4:** High Pressure Hydrogen Adsorption Measurements (Anne Dailly-GM)

Approach Multiple H₂ Binding Sites per Metal

 \square Create MOFs with exposed M²⁺ or M³⁺ cations, each binding 4 or 5 H₂ molecules

□ Hypothetical MOF can meet capacity targets, depending on Mg²⁺ binding enthalpy

Approach: Milestones Tasks 1 & 2

Due date	Description	%Comp	Status April 2015
03/14	Task 1 (G/N): Synthesis of MOFs with reversible H_2 uptake > 2.5 wt %	100%	Completed
03/14	Task 1 (G/N) : Preparation of a high-valent MOF with an initial H ₂ adsorption enthalpy greater than 12 kJ/mol	100%	Ni ₂ (<i>m</i> -dobdc) displays H ₂ binding enthalpy of -12.3 kJ/mol
03/14	Task 1 (G/N): Synthesis of MOFs with the ligands prepared in year 1	100%	3 bipyridine-MOFs synthesized
03/14	Task 1 (G/N): Demonstration of the post-synthetic insertion of metals into the open chelate sites of these new materials	100%	Single crystal diffractions shows binding of M ²⁺ to the bipy sites
03/14	Task 1 (G/N): Preparation of at least 2 MOFs with the optimal 7 Å between opposing pore surfaces as predicted with <i>in silico</i> screening	100%	3 dicarboxylate MOFs synthesized with optimal pore size
05/15	Task 1 (G/N): Demonstration of a MOF with an initial H ₂ adsorption enthalpy greater than the current record of 15.1 kJ/mol	90%	On-track
05/15	Task 1 (G/N): Synthesis of a metal-organic framework with reversible hydrogen uptake greater than 4.5 wt % at 298 K	50%	On-track
03/14	Task 2: Demonstrate that understanding of MOF-H ₂ interactions through inelastic neutron scattering experiments provide new insight	100%	Completed
05/15	Task 2: Demonstrate the use of quasielastic neutron scattering to help understand the roles of diffusion and entropy in H ₂ binding to MOFs	95%	Experiments and analysis underway

Approach: Milestones Tasks 3 & 4

Due date	Description	% Comp	Status April 2015
12/14	Task 3: Demonstrate the ability to determine H2-metal interactions in realisticsystems containing low-coordinate metal cations	100%	Completed
05/15	Task 3: Pre-screen optimal MOF targets by identification of systems that produce an H ₂ binding enthalpy > 20 kJ/mol	100%	Completed
03/14	Task 4: Demonstration of a correlation between high-pressure measurementsand theoretical and spectroscopic predictions	100%	Correlation demonstrated for several MOF-74 variants
06/14	Task 4: Demonstrate the ability to measure H ₂ adsorption in a test material up to 10 cycles at 298 K	100%	Completed
09/14	Task 4: Demonstrate the ability to measure H ₂ adsorption in a test material up to 10 cycles at t° relevant to onboard vehicle applications	100%	Completed
12/14	Task 4: Down select 1 or 2 samples for 100 cycles measurement	100%	Completed
05/15	Task 4: Demonstrate the ability to measure high-pressure H ₂ adsorption in MOFs up to 100 cycles at temperatures relevant to use in onboard vehicle applications	80%	Work stopped 12/2014

Approach: Metal-Organic Frameworks

8

Zn₄O(1,4-benzenedicarboxylate)₃ MOF-5

CCCCC.

BET surface areas up to 7100 m²/g

Densities as low as 0.13 g/cm³

Tunable pore sizes up to 10 nm

Channels connected in 1-, 2-, or 3-D

Internal surface can be functionalized

Can these high-surface area materials be used for hydrogen storage at ambient temperatures?

> Yaghi et al. *Nature* **2003**, *423*, 705 Kitagawa et al. *Angew. Chem., Int. Ed.* **2004**, *43*, 2334 Férey *Chem. Soc. Rev.* **2008**, 37, 191

A MOF with a High Density of Exposed M²⁺ Sites

 \Box Activated frameworks have Langmuir surface areas of 1277-2060 m²/g

A MOF with a High Density of Exposed M²⁺ Sites

□ Desolvation leads to square pyramidal M²⁺ centers with an open coordination site

Accomplishments: Task 1 Synthesis of a Structural Isomer of M₂(dobdc)

11

Kapelewski, Geier, Hudson, Stuck, Mason, Nelson, Xiao, Hulvey, Gilmour, FitzGerald, Head-Gordon, Brown, Long J. Am. Chem. Soc. 2014, 136, 12119

Low Cost Synthesis of M₂(*m*-dobdc)

- \Box Ligand can be synthesized in one step from resorcinol, CO₂, and KHCO₃
- □ All analogues can be synthesized in high space-time yield using inexpensive solvent
- \Box Total raw materials cost for making Mg₂(*m*-dobdc) is just \$3.10 per kg

Accomplishments: Task 1 Strong H₂ Binding in Ni₂(*m*-dobdc)

 \square High charge density at Ni²⁺ pulls H₂ close and gives record MOF binding energy

Accomplishments: Task 1 Close H₂ Packing within Ni₂(*m*-dobdc)

□ Greater charge density at Ni²⁺ gives closer packing for secondary adsorption site

Accomplishments: Task 1 Increased Volumetric Capacity in Ni₂(*m*-dobdc)

	25 °C total capacity	Р
	(g/L)	(bar)
Ni ₂ (<i>m</i> -dobdc)	12.1 ± 0.2*	100
Ni ₂ (dobdc)	11.2 ± 0.2	100
Co ₂ (<i>m</i> -dobdc)	10.2±0.2	100
Co ₂ (dobdc)	9.7	100
Be-BTB	9.1	95
MOF-5	9.0	100
pure H ₂	7.7	100

□ High density of exposed Ni²⁺ cations that strongly polarize H_2 molecules leads to a record volumetric uptake for a sorbent at 25 °C and 100 bar

*Value of 11.4 \pm 0.1 g/L obtained from sample from repeated large-scale synthesis

□ All isotherms show capacity greater than compressed H₂ at 25 °C □ Ni₂(*m*-dobdc) has a total capacity of 22.3 g/L at –75 °C and 100 bar

 \square Ni₂(*m*-dobdc) has significantly improved capacity over MOF-5 at -75 °C and 25 °C

□ Total capacity of Ni₂(*m*-dobdc) is 25% more than MOF-5 and 48% more than pure H₂ □ Usable capacity of Ni₂(*m*-dobdc) is 23% more than MOF-5 and 44% more than pure H₂

□ Total capacity of Ni₂(*m*-dobdc) is 36% more than MOF-5 and 98% more than pure H₂ □ Usable capacity of Ni₂(*m*-dobdc) is 16% more than MOF-5 and 66% more than pure H₂

 \Box Capacity of Ni₂(*m*-dobdc) is 36% more than MOF-5 and 98% more than pure H₂

Accomplishments: Task 1 Binding Multiple H₂ Molecules per Metal Cation

1 H₂ per metal cation

4 H₂ per metal cation

Accomplishments: Task 1 Insertion of MCl₂ in Zr₆O₄(OH)₄(bpydc)₆

□ Single crystal x-ray diffraction unambiguously confirms metal insertion

 $\hfill\square$ Inserted metal sites could potentially each bind two H_2 molecules

Accomplishments: Task 1 H₂ Adsorption in Metalated Zr₆O₄(OH)₄(bpydc)₆

□ Metalated frameworks can show increased uptake relative to bare framework

Accomplishments: Task 1 Synthesis of New Chelating Ligands

Seventeen new linkers with (charge-bearing) chelating functionalities have been synthesized, including ones with catechols, biphenols, bipyridines, and oxamides

Accomplishments: Task 1 Development of Protecting Group Strategies

 $\hfill\square$ Protecting groups needed to block chelate sites during synthesis

□ Bulky protecting groups may be used to control interpenetration

Toward Next-Generation MOFs for H₂ Storage

 Eleven different new MOFs synthesized for metal insertion attempts
More than 50 post-synthetic metal insertions into new MOFs have been performed and tested via H₂ adsorption isotherm measurements

 \Box In particular efforts underway to demonstrate two or more H₂ bound at metals in:

Accomplishments: Task 2 High Pressure Neutron Diffraction

Data refined with D₂ molecules in several sites;
summation of refined fractional occupancies yields
values comparable to adsorption isotherm data

Total refined occupancy at 12 bar: 148 D₂/unit cell, ~4.8 wt % H₂

Accomplishments: Task 2 High Pressure Neutron Diffraction

 \square Occupancies increase and $\mathsf{D_2}$ site densities increase in expected manner

 $\hfill\square$ Important step toward understanding density profiles of H_2 at relevant conditions

Accomplishments: Task 3 Binding Multiple H₂ Molecules per Metal

 \Box DFT calculated H₂ binding enthalpy is –19 kJ/mol at 25 °C

 \Box Potential for volumetric densities exceeding that of liquid H₂

Accomplishments: Task 3 Stepwise Activation Calculations for Metal Cations

□ Sequential ligand exchanges are calculated to lead to low-coordinate metals □ Can achieve multiple exposed coordination sites on the metal for H_2 binding

Accomplishments and Progress: Responses to Previous Year Reviewers' Comments

- □ Task 4, high-pressure H_2 measurements at GM, has been eliminated, per previous reviewer comments and with LBNL's ability to measure high-pressure isotherms
- Total volumetric capacity is the most relevant to commercial applications, as total capacity is an intrinsic property of a material that represents the total amount of gas that can be stored in the pores and volumetric capacity is more critical to onboard systems in small motor vehicles than gravimetric capacity
- Our overall strategy, as summarized on Slide 5, is to create materials with a high-density of open M²⁺ or M³⁺ cation sites, each capable of binding 4 or 5 H₂ molecules. This is the only viable route we see to meeting the volumetric capacity target of 40 g/L for a system using an adsorbent
- Our roadmap to accomplishing this involves the synthesis of thermally robust MOFs containing anionic chelating sites that can then be metalated and fully activated

Collaborations

Project team within DoE Fuel Cell Technologies Office:

- Lawrence Berkeley National Laboratory (prime, National Lab.)/UC Berkeley: Jeffrey Long: Synthesis and basic characterization of MOFs Martin Head-Gordon: Calculation and prediction of H₂ binding energies
- National Institute of Standards and Technology (sub, National Lab.): Craig Brown: Neutron diffraction and neutron spectroscopy

Additional collaborations:

- $\hfill\square$ Variable-temperature infrared spectroscopy with in situ H_2 dosing
 - Silvia Bordiga (University of Turin), Stephen FitzGerald (Oberlin College)
- □ Synthesis and metalation of porphyrin-containing MOFs
 - T. David Harris (Northwestern University)

Remaining Challenges and Barriers

- Metalation conditions for MOFs containing charge balancing ligands needs to be optimized
- Desolvation of frameworks containing non-structural metal cations remains a significant challenge; optimal strategies for exposing coordination sites must be determined
- Ligand syntheses are challenging and time-consuming; shorter synthetic routes would allow for more testing of framework formation, metalation, and desolvation
- □ While theoretical predictions have suggested optimal metalation targets, experimental realization must be achieved to confirm theoretical results

Proposed Future Work

Task 1: Synthesis of Metal-Organic Frameworks

Scale up synthesis of catechol containing MOFs and insert metal cations
Continue synthesis of catechol-based ligands and other charge-balancing ligands and associated MOFs for metal insertion

- \Box Further variable temperature studies comparing Ni₂(*m*-dobdc) and MOF-5
- \Box Send Ni₂(*m*-dobdc) sample to NREL for isotherm validation

Task 2: Characterization of Framework-H₂ Interactions

- □ Solve neutron structure of $Zr_6O_4(OH)_4(bpydc)_6(PdCl_2)_6$ dosed with D₂, as 2 H₂ molecules per Pd²⁺ should be possible
- □ Continue inelastic neutron scattering experiments
- \Box Perform quasielastic neutron diffraction experiments to study diffusion and entropy effects on $\rm H_2$ adsorption

Proposed Future Work

Task 3: First-Principles Calculations of Hydrogen Binding Enthalpies

- $\hfill\square$ Explore H2-metal interactions in real systems that have been realized experimentally
- □ Determine optimal metalation conditions and subsequent desolvation

Technology Transfer Activities

□ Patent applications:

 M. T. Kapelewski, S. J. Geier, J. R. Long. "Metal-Organic Frameworks with a High Density of Highly Charged Exposed Metal Cation Sites. Submitted, patent pending.

- Applying for follow-up funding to further develop the materials presented here
- □ Mosaic Materials, Inc. has developed an inexpensive, scalable synthesis of $Ni_2(m$ -dobdc) and is looking to commercialize this material

Summary

- □ At 25 °C and 100 bar, $Ni_2(m$ -dobdc) exhibits the highest total volumetric storage capacity of any known metal-organic framework
- □ At –75 °C and 100 bar, a crystal of $Ni_2(m$ -dobdc) exhibits double the storage capacity of an equivalent empty volume
- \Box H₂ adsorption was measured in metalated zirconium-based frameworks, with some having substantially greater H₂ uptake over the base material
- □ A catechol-based ligand has been incorporated into a highly-stable zirconium-based framework on a large scale, allowing for metalation
- Neutron diffraction of MOF-5 was used to determine the density profile of D₂ in the pores with increasing pressure, revealing similar adsorption sites to those occupied at lower temperatures and lower pressure
- Theoretical calculations have been used to predict pathways for desolvating metal cations in MOF pores

Technical Back-Up Slides

+

Low-pressure H_2 lsotherms in $M_2(m$ -dobdc)

□ Although $-Q_{st}$ follows Ni > Co > Fe > Mn, saturation capacity at 77 K and 1.2 bar doesn't follow the trend as surface area factors into total uptake

Synthesis of diboc-cat-dc Ligand

Synthesis of a MOF with the diboc-cat-tpdc ligand

□ Large-scale synthesis of UIO-68-type material with protected catechol is possible

- Langmuir surface area: 2768 m²/g
- $\hfill\square$ More sample is being prepared for metalation

