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Overview

• Project start date: 08/01/2014
• Project end date:  01/31/2016

Timeline

Partners
• HRL Laboratories (lead, boranes)
• Sandia National Laboratories  
(subcontractor, ternary borides)

• University of Missouri, St. Louis
(subcontractor, theory)

Technical Barriers
• A. System weight and volume
• C. Efficiency
• E. Charging and discharge rates

Budget
• Total project budget: $562.5K

- Total federal share: $500K
- Total recipient share: $62.5K
- Total DOE funds spent*: $195.3K

* as of 3/31/15
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Objectives and Outcome

Relevance –

Previous work (MHCoE et al.) identified boron-based storage materials 
as very attractive given their versatility and high capacities (> 10 wt%), 
although the cycling rates were poor (multiple phases, kinetically limited)

Objectives
Improve kinetics by:
1) eliminating multi-phase kinetic 
barriers (ternary borides/mixed-metal 
borohydrides that maintain single phases 
during cycling)
2) minimizing B-atom rearrangement 
(“lithiated boranes”: boranes that cycle  
while preserving the B-B framework)

Expected outcome
An experimental and computational 
assessment of ternary borides and 
lithiated boranes to meet the DOE 
targets for onboard hydrogen storage
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• Begin from both dehydrogenated and hydrogenated states
• Use computations (PEGS and DFT) to guide material choices
• Ternary borides:

- synthesize Mg + (V, Cr, Mn, Fe, Co) borides using mechano-chemistry
- synthesize mixed-metal borohydrides by solution or solid-state reactions
- evaluate hydrogen cycling behavior (Sieverts measurements)

• Lithiated boranes:
- survey candidate boranes (molecular to extended frameworks)
- synthesize borane/LiH composites by mechanical milling
- evaluate for B-H/B-Li exchange hydrogen cycling (Sieverts measurements)

Milestones completed (Sept 2014 to March 2015)
• Computational assessment of the stability and hydrogen cycling energetics

of Mg/TM ternary borides and borohydrides 
• Synthesis of Mg/Mn ternary borides (theoretically capable of 11 wt% H2 uptake) 
• Computations of model B-H/B-Li exchange energetics 
• Survey of borane substrates for lithiation (with > 9 wt% H2) 

Synergetic Experimental & Computational Effort
Approach –
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Formation Energy of Ternary Borides

DFT (T = 0 K) using known experimental structures as prototypes
MgB2 + TMB2 → MgTMB4

2MgB2 + TMB2 → Mg2TMB6

Accomplishments –

TM-substituted experimental 
structures

MgTMB4

Example:

CeCrB4
NiScB4

Pbam
prototypes

• TM = Mn, Fe, and Co predicted to be favorably stable  (ΔE < 0 kJ/mol)
• TM = Sc, Ti, and V likely unstable with respect to the starting borides
• TM = Cr and Ni are borderline.
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Dehydrogenation of Mg/TM Borohydrides

• Predicted dehydrogenation enthalpies are unfavorably
exothermic (negative) or only slightly endothermic (positive)

Accomplishments –

PEGS calculations for
MgTM(BH4)4 → MgTMB4 + 8H2

MgTM(BH4)4

Mg2TM(BH4)6

• PEGS borohydride structures (T = 0 K)
• Pbam ternary borides (TM-sub. exp. structures)
• E(H2) = -630 kJ/mol

TM MgTM(BH4)4
[kJ/mol]

MgTMB4
[kJ/mol]

dE
[kJ/mol-H2]

Mn -8585.5 -3720.9 -25.14
Fe -8579.7 -3632.7 -14.79
Co -8431.2 -3510.4 -18.06

TM Mg2TM(BH4)6
[kJ/mol]

Mg2TMB6
[kJ/mol]

dE
[kJ/mol-H2]

Mn -12760.4 -5159.4 +0.21

Fe -12704.1 -5105.1 -0.05

Co -12557.6 -4989.7 -2.66

1:1

2:1

Mg:TM

PEGS calculations for
Mg2TM(BH4)6 → Mg2TMB6 + 12H2
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Dehydrogenation of Mg3Mn(BH4)8

Accomplishments –

PEGS calculations for
Mg3Mn(BH4)8 → Mg2MnB6 + MgB2 + 16H2 (13 wt%) 

• Predicted enthalpy is favorably positive
• Larger Mg:TM ratios tend toward more positive enthalpies
• However, dehydrogenated state is not single phase (Mg3MnB8 is predicted 

to be unstable and decompose into Mg2MnB6 + MgB2)
• Considering higher Mg:Mn ratios and Ca analogs that may provide stable 

ternary borides

Mg3Mn(BH4)8
[kJ/mol]

Mg2MnB6
[kJ/mol]

MgB2
[kJ/mol]

dE
[kJ/mol-H2]

-16891.6 -5158.5 -1475.4 +7.733:1

E(H2) = -630 kJ/mol
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Synthesis of Mg/Mn Ternary Borides
Accomplishments –

• XRD data shows successful synthesis of single-phase ternary Mg/Mn boride
• EDX confirms homogeneous atom distribution (at ~100 nm resolution)
• Evaluate for hydrogenation (preliminary measurement shows ~1.2 wt% uptake)

Mechano-chemical reaction (SPEX 8000 mill, 16 hr)
xMgB2 + (1-x)MnB2 → MgxMn1-xB2 (x = 0.5, 0.75 and 0.9) 

XRD EDX         
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Synthesis of Mg(BH4)2 and Mn(BH4)2

Accomplishments –

Solution phase reaction (heptane/toluene)
MBu2 + excessBH3-S(CH3)2 → M(BH4)2-(S(CH3)2)2 → M(BH4)2 M = Mg or Mn   

(1
00

)

(1
02

)

(1
01

)

(2
-1

0)

(2
01

)
(2

00
)

Mn(BH4)2(Me2S)x

Mn(BH4)2, Exp.

Mn(BH4)2, P3112, Calc.

Mg(BH4)2 Mn(BH4)2

• XRD confirms successful preparation of phase pure Mg(BH4)2 and Mn(BH4)2

• A new synthetic route to manganese borohydride 
• These are starting materials to make Mg/Mn mixed-metal borohydride via 
solid-state and solution synthesis routes
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B-H/Li-H Exchange Energetics
Accomplishments –

• Predicted enthalpies are large
• However, energy decreases with
size of the boron framework

Lowest energy single Li exchange 
into increasing boron frameworks

Bridge

top cap

mid

highest energy

lowest ~180
kJ/mol H2

~415
kJ/mol H2

~200 kJ/mol H2

high high

• Lowest energy sites are non-
bridging hydrogen on BH2
(bridge sites are 2nd lowest)

• However, “exchange” occurs 
with large structure deformation
(Li moves over open faces)

Single Li exchange into decaborane
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Hydrogenation of Li7B6 Alloy Substrate
Accomplishments –

Hydrogenation (100 bar H2)                                     Dehydrogenation

• Significant (2.6 wt%) low temperature (100°C) hydrogenation observed 
• Could be due to unreacted Li metal, however
• XRD (next slide) gives starting composition of 0.9Li7B6 + 0.08Li + 0.02Li2O
• This predicts only 0.08 wt% H2 uptake from unreacted Li
• Much greater observed uptake suggests additional reaction (see next slide)
• However, no significant dehydrogenation up to 250°C 

Li7B 6 synthesized by direct reaction of B kneaded with Li metal foil 
(450°C, 48 hr, sealed steel vessel) 
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Accomplishments –

Characterization of Li7B6 Alloy Reaction

XRD      IR

B10H14 reference

|   | |
LiBH4

B-H

|       |
LiBH4

Li7B6

Li7B6

Li2O
Li

LiH

LiH

Li7B6

|
LiBH4

- as synthesized
- after hydrogenation after hydrogenation

• XRD and IR results indicate formation of LiBH4 upon hydrogenation
• IR shows additional B-H bonding not associated with LiBH4
• Shift in XRD peak (green arrow) suggests H-intercalated Li boride
• This possible new phase is supported by our calculations of
Li8B7 and Li8B7H
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Polymeric Borane Substrate

Accomplishments –

Polymerized B10H14 (p-BHx)
(250 °C, 48 hr sealed steel vessel)

Hydrogen cycling
p-BHx + LiH (milled 20 hr)

p-BHx

B10H14
reference

B-H
bonding

2nd

cycle

3rd

cycle 
Temperature  

• p-BHx avoids sublimation of molecular substrates (eg, B10H14 and C2B10H12)
• Significant B-H bonding retained (x = 0.64 ± 0.02 by PGAA conducted at NIST)
• So far, ~ 1 wt% cyclable H2 (maximum = 7.7 wt% for x = 0.64)
• Optimize polymerization for lithiation reaction (capacity and kinetics)

FTIR

1st

cycle Hydrogenation:
80 bar
250 °C, 2nd cycle
300 °C, 3rd cycle

H2 desorption
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Hydrogenated Boron Nanoparticle Substrate

Accomplishments –

BH0.36 nanoparticles (prepared by high energy milling of B in H2)
obtain from Prof. Scott Anderson (U Utah)

Utah BH0.36

B10H14 (reference)

B-H 
stretch

• Result confirms similar FTIR characterization performed at  Utah
• Mill with LiH for lithiation reaction

FTIR



15

Collaborations

Project partners
• HRL (prime, experimental effort focused on lithiated boranes)

• Sandia National Laboratories (subcontractor, experimental effort 
focused on ternary borides)

• University of Missouri, St. Louis (subcontractor, theory/computation
effort to predict energetics of lithiated boranes and ternary borides)

Formally, all partners contribute to all tasks

External collaborations
• University of Utah, Prof. Scott Anderson (provided BHx nanoparticles)

• NIST, Terry Udovic (PGAA, neutron vibrational spectroscopy)
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Future Work

• Ternary borides:
- Characterize hydrogenation/dehydrogenation behavior of Mg/Mn borides
- Synthesize Mg/Mn mixed-metal borohydride and characterize the
dehydrogenation/rehydrogenation behavior

- Prepare Fe and Co-based ternary boride and borohydride materials

• Lithiated boranes:
- Optimize polymerized borane for cycling kinetics and capacity
- Consider doping (eg, C, N, O) to lower enthalpy (use input from computations)
- Perform LiH exchange reaction with BH0.36 nanoparticles
- Consider including a catalyst (materials contain no transition metals) 

• Theory/computation:
- Energies for multiple Li exchanges, C-substituted boranes, and extended
borane structures

- Critical temperatures for solubility of Mn and Zn in MgB2
- Stability of CaTMB4 and Ca2TMB6
- Stability using PEGS structures of CaTM(BH4)4 and Ca2TM(BH4)6
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Summary

• Ternary borides:
- Successfully synthesized Mg/Mn (1:1, 3:1, and 9:1) ternary borides
- Synthesized phase pure Mg and Mn borohydrides (using a common scheme

amenable for mixed-metals)

• Lithiated boranes:
- Synthesized Li7B6 alloy and demonstrated slight hydrogenation (possibly
forming a new phase)

- Polymerized decaborane and demonstrated 1 wt% reversible hydrogen 
cycling by reaction with LiH

• Theory/computation:
- Predicted favorable ternary borides for Mg-TM, TM = Mn, Fe, and Co
- Predicted stability of MgnMnm(BH4)2(n+m) increases with Mg:Mn ratio
- Both 1:1 and 2:1 borohydrides dehydrogenate exothermically. The 3:1
composition is predicted to dehydrogenate and phase separate with an 
endothermic enthalpy of about 7 kJ/mol H2

- Predicted Li/H exchange energy for small (n < 20) borane clusters is positive 
but too large (> 100 kJ/mol-H2), although it decreases with cluster size
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Technical Back-Up Slides (3)
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Lithiated Boranes: BnHx + yLiH ↔ BnHx-yLiy + yH2

• Idea is to preserve B-B bonding framework (avoid B-B bond rearrangement),
although, formally there are still two phases (BHx and LiH) with interface

• Would be a new type of hydrogen storage reaction
- could be considred a B-H/Li-H metathesis reaction
- some analogy to LiH/hydrocarbon polymer reaction (DOI: 10.1221/cm500042c)

• Large range of possible borane substrate classes:
- Molecular (B10H14, C2B10H12)
- Polymeric (B18H22 or larger BHx)
- Nanoparticle (B80H60, from U. Utah)
- Alloy (Li7B6, dehydrogenated state)
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Li-B Alloy

Li2O Li

• Synthesis of Li7B6 alloy: (Angew. Chem. Int. Ed. 2000, 39, 2349-2353)
- 8Li + 6B (in glove box, mixed/kneaded)
- started with 2 g
- sealed in ½” OD SS tubing

 - 48 h at 450°C (in air) 
- recovered 0.8 g
- Predominate phase is

LiB0.9 with unreacted
Li metal and impurity Li2O

• This sample will be treated
in hydrogen
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H exchanged

Large Deformations in Decaborane 
Configuration Upon 1st Li Exchange

• Caveat: gas phase calculations
• Li prefers open face locations
• Large boron cage structure deformation
• B-H coordination may change

Post-exchange
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