

Boron-Based Hydrogen Storage: Ternary Borides and Beyond

John J. Vajo, Jason Graetz HRL Laboratories, LLC

Vitalie Stavila, Lennie Klebanoff Sandia National Laboratories

Eric Majzoub University of Missouri, St. Louis

10 June 2015

Project ID # ST117

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 08/01/2014
- Project end date: 01/31/2016

Technical Barriers

- A. System weight and volume
- C. Efficiency
- E. Charging and discharge rates

Budget

- Total project budget: \$562.5K
 - Total federal share: \$500K
 - Total recipient share: \$62.5K
 - Total DOE funds spent*: \$195.3K

* as of 3/31/15

Partners

- HRL Laboratories (lead, boranes)
- Sandia National Laboratories (subcontractor, ternary borides)
- University of Missouri, St. Louis (subcontractor, theory)

Relevance –

Objectives and Outcome

Previous work (*MHCoE et al.***) identified boron-based storage materials** as very attractive given their versatility and high capacities (> 10 wt%), although the cycling rates were poor (*multiple phases, kinetically limited*)

Objectives

Improve kinetics by: 1) eliminating multi-phase kinetic barriers (ternary borides/mixed-metal borohydrides that maintain single phases during cycling)

2) minimizing B-atom rearrangement ("lithiated boranes": boranes that cycle while preserving the B-B framework)

Expected outcome

An experimental and computational assessment of ternary borides and lithiated boranes to meet the DOE targets for onboard hydrogen storage Approach –

Synergetic Experimental & Computational Effort

- Begin from both dehydrogenated and hydrogenated states
- Use computations (PEGS and DFT) to guide material choices
- Ternary borides:
 - synthesize Mg + (V, Cr, Mn, Fe, Co) borides using mechano-chemistry
 - synthesize mixed-metal borohydrides by solution or solid-state reactions
 - evaluate hydrogen cycling behavior (Sieverts measurements)
- Lithiated boranes:
 - survey candidate boranes (molecular to extended frameworks)
 - synthesize borane/LiH composites by mechanical milling
 - evaluate for B-H/B-Li exchange hydrogen cycling (Sieverts measurements)

Milestones completed (Sept 2014 to March 2015)

- Computational assessment of the stability and hydrogen cycling energetics of Mg/TM ternary borides and borohydrides
- Synthesis of Mg/Mn ternary borides (theoretically capable of 11 wt% H₂ uptake)
- Computations of model B-H/B-Li exchange energetics
- Survey of borane substrates for lithiation (with > 9 wt% H₂)

- TM = Mn, Fe, and Co predicted to be favorably stable ($\Delta E < 0 \text{ kJ/mol}$)
- TM = Sc, Ti, and V likely unstable with respect to the starting borides
- TM = Cr and Ni are borderline.

Dehydrogenation of Mg/TM Borohydrides

- **PEGS** borohydride structures (*T* = 0 K)
- Pbam ternary borides (TM-sub. exp. structures)
- E(H₂) = -630 kJ/mol

Μ

2:1

PEGS calculations for MgTM(BH₄)₄ \rightarrow MgTMB₄ + 8H₂

a:TM	MgTM(BH ₄) ₄		
3	John -		
1:1			

TM	MgTM(BH ₄) ₄ [kJ/mol]	MgTMB₄ [kJ/mol]	dE [kJ/mol-H ₂]
Mn	-8585.5	-3720.9	-25.14
Fe	-8579.7	-3632.7	-14.79
Со	-8431.2	-3510.4	-18.06

PEGS calculations for Mg₂TM(BH₄)₆ \rightarrow Mg₂TMB₆ + 12H₂

 $Mg_2TM(BH_4)_6$

TM	Mg ₂ TM(BH ₄) ₆ [kJ/mol]	Mg ₂ TMB ₆ [kJ/mol]	dE [kJ/mol-H ₂]
Mn	-12760.4	-5159.4	+0.21
Fe	-12704.1	-5105.1	-0.05
Со	-12557.6	-4989.7	-2.66

• Predicted dehydrogenation enthalpies are unfavorably exothermic (negative) or only slightly endothermic (positive)

Dehydrogenation of Mg₃Mn(BH₄)₈

PEGS calculations for Mg₃Mn(BH₄)₈ \rightarrow Mg₂MnB₆ + MgB₂ + 16H₂ (13 wt%)

Mg ₃ Mn(BH ₄) ₈	Mg ₂ MnB ₆	MgB ₂	dE
[kJ/mol]	[kJ/mol]	[kJ/mol]	[kJ/mol-H ₂]
-16891.6	-5158.5	-1475.4	+7.73

 $E(H_2) = -630 \text{ kJ/mol}$

• Predicted enthalpy is favorably positive

Accomplishments –

- Larger Mg:TM ratios tend toward more positive enthalpies
- However, dehydrogenated state is not single phase (Mg₃MnB₈ is predicted to be unstable and decompose into Mg₂MnB₆ + MgB₂)
- Considering higher Mg:Mn ratios and Ca analogs that may provide stable ternary borides

Accomplishments – Sandia National Laboratories

Synthesis of Mg/Mn Ternary Borides

Mechano-chemical reaction (SPEX 8000 mill, 16 hr) xMgB₂ + (1-x)MnB₂ \rightarrow Mg_xMn_{1-x}B₂ (x = 0.5, 0.75 and 0.9)

- XRD data shows successful synthesis of single-phase ternary Mg/Mn boride
- EDX confirms homogeneous atom distribution (at ~100 nm resolution)
- Evaluate for hydrogenation (preliminary measurement shows ~1.2 wt% uptake)

Synthesis of $Mg(BH_4)_2$ and $Mn(BH_4)_2$

Solution phase reaction (heptane/toluene) $MBu_2 + excessBH_3-S(CH_3)_2 \rightarrow M(BH_4)_2-(S(CH_3)_2)_2 \rightarrow M(BH_4)_2$ M = Mg or Mn

- XRD confirms successful preparation of phase pure Mg(BH₄)₂ and Mn(BH₄)₂
- A new synthetic route to manganese borohydride

Accomplishments –

Sandia National

aboratories.

• These are starting materials to make Mg/Mn mixed-metal borohydride via solid-state and solution synthesis routes

B-H/Li-H Exchange Energetics

Single Li exchange into decaborane

*j*enter to

science

- Lowest energy sites are nonbridging hydrogen on BH₂ (bridge sites are 2nd lowest)
- However, "exchange" occurs with large structure deformation (Li moves over open faces)

Lowest energy single Li exchange into increasing boron frameworks

 $\mathrm{B}_{n}\mathrm{H}_{m} + 16\,\mathrm{LiH} \rightarrow \mathrm{B}_{n}\mathrm{H}_{m-1}\mathrm{Li} + 15\,\mathrm{LiH} + \mathrm{H}_{2}$

- Predicted enthalpies are large
- However, energy decreases with size of the boron framework

Accomplishments -

HRL

Hydrogenation of Li₇B₆ Alloy Substrate

- Significant (2.6 wt%) low temperature (100°C) hydrogenation observed
- Could be due to unreacted Li metal, however
- XRD (next slide) gives starting composition of 0.9Li₇B₆ + 0.08Li + 0.02Li₂O
- This predicts only 0.08 wt% H₂ uptake from unreacted Li
- Much greater observed uptake suggests additional reaction (see next slide)
- However, no significant dehydrogenation up to 250°C

Accomplishments -

Characterization of Li7B₆ Alloy Reaction

- XRD and IR results indicate formation of LiBH₄ upon hydrogenation
- IR shows additional B-H bonding not associated with LiBH₄
- Shift in XRD peak (green arrow) suggests H-intercalated Li boride
- This possible new phase is supported by our calculations of Li₈B₇ and Li₈B₇H

Polymeric Borane Substrate

- p-BH_x avoids sublimation of molecular substrates (eg, $B_{10}H_{14}$ and $C_2B_{10}H_{12}$)
- Significant B-H bonding retained ($x = 0.64 \pm 0.02$ by PGAA conducted at NIST)
- So far, ~ 1 wt% cyclable H₂ (maximum = 7.7 wt% for x = 0.64)
- Optimize polymerization for lithiation reaction (capacity and kinetics)

Hydrogenated Boron Nanoparticle Substrate

 $BH_{0.36}$ nanoparticles (prepared by high energy milling of B in H_2) obtain from Prof. Scott Anderson (U Utah)

- Result confirms similar FTIR characterization performed at Utah
- Mill with LiH for lithiation reaction

Project partners

- HRL (prime, experimental effort focused on lithiated boranes)
- Sandia National Laboratories (subcontractor, experimental effort focused on ternary borides)
- University of Missouri, St. Louis (subcontractor, theory/computation effort to predict energetics of lithiated boranes and ternary borides)

Formally, all partners contribute to all tasks

External collaborations

- University of Utah, Prof. Scott Anderson (provided BH_x nanoparticles)
- NIST, Terry Udovic (PGAA, neutron vibrational spectroscopy)

- Ternary borides:
 - Characterize hydrogenation/dehydrogenation behavior of Mg/Mn borides
 - Synthesize Mg/Mn mixed-metal borohydride and characterize the dehydrogenation/rehydrogenation behavior
 - Prepare Fe and Co-based ternary boride and borohydride materials
- Lithiated boranes:
 - Optimize polymerized borane for cycling kinetics and capacity
 - Consider doping (eg, C, N, O) to lower enthalpy (use input from computations)
 - Perform LiH exchange reaction with BH_{0.36} nanoparticles
 - Consider including a catalyst (materials contain no transition metals)
- Theory/computation:
 - Energies for multiple Li exchanges, C-substituted boranes, and extended borane structures
 - Critical temperatures for solubility of Mn and Zn in MgB₂
 - Stability of CaTMB₄ and Ca₂TMB₆
 - Stability using PEGS structures of CaTM(BH₄)₄ and Ca₂TM(BH₄)₆

- Ternary borides:
 - Successfully synthesized Mg/Mn (1:1, 3:1, and 9:1) ternary borides
 - Synthesized phase pure Mg and Mn borohydrides (using a common scheme amenable for mixed-metals)
- Lithiated boranes:
 - Synthesized Li₇B₆ alloy and demonstrated slight hydrogenation (possibly forming a new phase)
 - Polymerized decaborane and demonstrated 1 wt% reversible hydrogen cycling by reaction with LiH
- Theory/computation:
 - Predicted favorable ternary borides for Mg-TM, TM = Mn, Fe, and Co
 - Predicted stability of $Mg_nMn_m(BH_4)_{2(n+m)}$ increases with Mg:Mn ratio
 - Both 1:1 and 2:1 borohydrides dehydrogenate exothermically. The 3:1 composition is predicted to dehydrogenate and phase separate with an endothermic enthalpy of about 7 kJ/mol H₂
 - Predicted Li/H exchange energy for small (n < 20) borane clusters is positive but too large (> 100 kJ/mol-H₂), although it decreases with cluster size

Technical Back-Up Slides (3)

- Idea is to preserve B-B bonding framework (avoid B-B bond rearrangement), although, formally there are still two phases (BH_x and LiH) with interface
- Would be a new type of hydrogen storage reaction
 - could be considred a B-H/Li-H metathesis reaction
 - some analogy to LiH/hydrocarbon polymer reaction (DOI: 10.1221/cm500042c)
- Large range of possible borane substrate classes:
 - Molecular ($B_{10}H_{14}$, $C_2B_{10}H_{12}$)
 - Polymeric (B₁₈H₂₂ or larger BH_x)
 - Nanoparticle $(B_{80}H_{60}, from U. Utah)$
 - Alloy (Li₇B₆, dehydrogenated state)

Li-B Alloy

- Synthesis of Li₇B₆ alloy: (Angew. Chem. Int. Ed. 2000, 39, 2349-2353)
 - 8Li + 6B (in glove box, mixed/kneaded)
 - started with 2 g
 - sealed in 1/2" OD SS tubing

- 48 h at 450°C (in air)
- recovered 0.8 g
- Predominate phase is LiB_{0.9} with unreacted Li metal and impurity Li₂O
- This sample will be treated in hydrogen

Large Deformations in Decaborane Configuration Upon 1st Li Exchange

Center for Nanoscience

- Caveat: gas phase calculations
- Li prefers open face locations
- Large boron cage structure deformation
- B-H coordination may change

