List of Projects Presented but Not Reviewed

Project ID	Project Title	Principal Investigator Name	Organization
PD-112	Reformer-Electrolyzer-Purifier (REP) for Production of Hydrogen [CO2 Pump]	Fred Jahnke	FuelCell Energy, Inc.
PD-117	High Temperature, High Pressure Electrolysis	Cortney Mittelsteadt	Giner, Inc.
PD-118	New Metal Oxides for Efficient Hydrogen Production via Solar Water Splitting	Yanfa Yan	University of Toledo
PD-119	National Science Foundation/U.S. Department of Energy Solar Hydrogen Fuel: Engineering Surfaces, Interfaces, and Bulk Materials for Unassisted Solar Photoelectrochemical Water Splitting	Tom Jaramillo	Stanford University
PD-120	Accelerated Discovery of Advanced Redox Materials for Solar Thermal Water Splitting to Produce Renewable Hydrogen	Charles Musgrave	University of Colorado Boulder
PD-121	Tunable Photoanode-Photocathode- Catalyst Interface Systems for Efficient Solar Water Splitting	G. Charles Dismukes	Rutgers University
PD-128	2014–2016 H2 Refuel H-Prize	Jeff Serfass	Hydrogen Education Foundation
PD-129	Novel Hybrid Microbial Electrochemical System for Efficient Hydrogen Generation from Biomass	Hong Liu	Oregon State University
ST-014	Hydrogen Sorbent Measurement Qualification and Characterization	Phil Parilla	National Renewable Energy Laboratory (NREL)
ST-093	Melt Processable PAN Precursor for High Strength, Low-Cost Carbon Fibers	Felix Paulauskas	Oak Ridge National Laboratory (ORNL)
ST-101	Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks	David Gotthold	Pacific Northest National Laboratory (PNNL)
ST-110	Optimizing the Cost and Performance of Composite Cylinders for Hydrogen Storage Using a Graded Construction (Small Business Innovation Research Phase II)	Andrea Haight	Composite Technology Development
ST-128a	Hydrogen Storage Materials Advanced Research Consortium: Sandia Effort	Mark Allendorf	Sandia National Laboratories (SNL)

Project ID	Project Title	Principal Investigator Name	Organization
ST-129a	HyMARC: Hydrogen Storage Materials Advanced Research Consortium	Brandon Wood	Lawrence Livermore National Laboratory (LLNL)
ST-130a	HyMARC: A Consortium for Advancing Solid-State Hydrogen Storage Materials	Jeffery Urban	Lawrence Berkeley National Laboratory (LBNL)
ST-131a	H2 Storage Characterization and Optimization Research Efforts	Thomas Gennett	NREL
ST-134	Investigation of Metal and Chemical Hydrides for Hydrogen Storage in Novel Fuel Cell Systems	Ted Motyka	Savannah River National Laboratory (SRNL)
ST-135	H2 Storage Characterization and Optimization Research Efforts	Thomas Gennett	NREL
BESH- 2001	Metal Oxide-Supported Platinum Monolayer Electrocatalysts for Oxygen Reduction	Radoslav Adzic	Brookhaven National Laboratory (BNL)
BESH- 2002	Catalysis and Electrocatalysis for Advanced Fuel Synthesis	Jose Rodriguez	BNL
BESH- 2003	Control of Reactivity in Nanoporous Metal/Ionic Liquid Composite Catalysts	Jonah Erlebacher	John Hopkins University
BESH- 2004	Multifunctional Catalysis to Synthesize and Utilize Energy Carriers	Tom Autrey	PNNL
BESH- 2005	Modeling Catalyzed Growth of Single- Wall Carbon Nanotubes	Perla Balbuena	Texas A&M University
BESH- 2006	Room Temperature Electrochemical Upgrading of Methane to Oxygenate Fuels	Bill Mustain	University of Connecticut
BESH- 2007	Nanostructured, Targeted Layered Metal Oxides as Active and Selective Heterogeneous Electrocatalysts for Oxygen Evolution	Eranda Nikolla	Wayne State University
BESH- 2008	Controlling Structural, Electronic, and Energy Flow Dynamics of Catalytic Processes through Tailored Nanostructures	Talat Rahman	University of Central Florida
BESH- 2009	Development of Physically Transparent, Predictive Structure-Performance Relationships for Rational Design of Multi-Component Catalytic Materials	Suljo Linic	University of Michigan

Project ID	Project Title	Principal Investigator Name	Organization
BESH- 2010	Computational Design of Graphene- Nanoparticle Catalysts	Ashwin Ramasubramaniam	University of Massachusetts
BESH- 2012	Atomic-Scale Design of Metal and Alloy Catalysts: A Combined Theoretical and Experimental Approach	Manos Mavrikakis	University of Wisconsin
BESH- 2013	Catalyst Screening and Common Design Principles for HDO: A DFT investigation on pure and promoted MoO3(010)	Lars Grabow	University of Houston
BESH- 2014	Fundamentals of Catalysis and Chemical Transformations	Steve Overbury	ORNL
BESH- 2015	Nanostructured Catalysts for Hydrogen Generation from Renewable Feedstocks	Yong Wang	PNNL
BESH- 2016	Element Specific Atomic Arrangement of Binary and Ternary Alloy Nanosized Catalysts in As Prepared and Active State	Valeri Petkov	Central Michigan University
BESH- 2017	Oxide Perovskites as Protonic Conductors: Thermodynamic Stability and Protonic Conductivity	Anil Virkar	University of Utah
BESH- 2018	Computer Simulation of Proton Transport in Fuel Cell Membranes	Greg Voth	University of Chicago
BESH- 2019	Fundamentals of Hydroxide Conducting Systems for Fuel Cells and Electrolyzers	Bryan Pivovar	NREL
FC-105	Novel Structured Metal Bipolar Plates for Low Cost Manufacturing	C.H. Wang	TreadStone Technologies, Inc.
FC-115	Affordable, High Performance, Intermediate Temperature Solid Oxide Fuel Cells	Bryan Blackburn	Redox Fuel Cells, Inc.
FC-117	Ionomer Dispersion Impact on PEM Fuel Cell and Electrolyzer Durability	Hui Xu	Giner, Inc.
FC-150	Dimensionally Stable High Performance Membranes	Cortney Mittelsteadt	Giner, Inc.
FC-151	Low-Cost Proton Conducting Membranes for PEM Fuel Cells	Hongxing Hu	Amsen Technologies LLC
FC-152	Novel Hydrocarbon Ionomers for Durable Proton Exchange Membranes	William Harrison	Nanosonic Inc.

Project ID	Project Title	Principal Investigator Name	Organization
FC-153	Novel Nanocomposite Polymer Electrolyte Membranes for Fuel Cells	Runquing Ou	NEI Corporation
FC-154	Regenerative Fuel Cell System (SBIR Phase II)	Paul Matter	pH Matter, LLC
MN-015	Continuous Fiber Composite Electrofusion Coupler	Brett Kimball	Automated Dynamics
MN-016	In-line Quality Control of PEM Materials	Paul Yelvington	Mainstream
MT-019	2016 HEF Hydrogen Student Design Contest Winning Project		University of Waterloo
ARPAE- 017	A Novel Intermediate-Temperature Fuel Cell Tailored for Efficient Utilization of Methane	Meilin Liu	Georgia Tech
ARPAE- 018	Nanocomposite Electrodes for a Solid Acid Fuel Cell Stack Operating on Reformate	Tom Zawodzinski	ORNL/UT-Knoxville
ARPAE- 019	Low Temperature Solid Oxide Fuel Cells for Transformational Energy Conversion	Bryan Blackburn	Redox Power Systems
ARPAE- 020	Solid Acid Fuel Cell Stack for Distributed Generation Applications	Calum Chisholm	SAFCell
ARPAE- 021	Fuel Cells with Dynamic Response Capability Based on Energy Storage Electrodes with Catalytic Function	Yunfeng Lu	UCLA – University of California, Los Angeles
ARPAE- 022	A Novel Intermediate-temperature Bifunctional Ceramic Fuel Cell Energy System	Kevin Huang	University of South Carolina
ARPAE- 023	Development of an Intermediate Temperature Metal Supported Proton Conducting Solid Oxide Fuel Cell Stack	Dave Tew	UTRC
ARPAE- 024	Intermediate Temperature Hybrid Fuel Cell System for the Conversion of Natural to Electricity and Liquid Fuels	Ted Krause	Argonne National Laboratory (ANL)
ARPAE- 025	Dual Mode Intermediate Temperature Fuel Cell: Liquid Fuels and Electricity	Carl Willman	FuelCell Energy
ARPAE- 026	Intermediate-Temperature Electrogenerative Cells for Flexible Cogeneration of Power and Liquid Fuel	Greg Tao	MSRI

Project ID	Project Title	Principal Investigator Name	Organization
ARPAE- 027	Intermediate Temperature Proton Conducting Fuel Cells for Transportation Applications	S. Elangovan	Ceramatec
ECS-001	FC Catalysts	Ted Krause	ANL
ECS-002	User Facilities: What they are and how to access them	Karren More	ORNL
ECS-003	Small Business Voucher Pilot (and CAP) / SBV	Christopher Ainscough	NREL
ECS-004	Performance Evaluation and Testing / Tech Assistance	Bryan Pivovar	NREL
ECS-005	FC Durability / FCPAD	Rod Borup	Los Alamos National Laboratory (LANL)
ECS-006	H2 Production	Kev Adjemian	Idaho National Laboratory (INL)
ECS-007	Manufacturing	Michael Ulsh	NREL
ECS-008	Sensors	Rangachary Mukundan	LANL
ECS-009	Hydrogen Storage and Delivery	David Wood	ORNL
H2REFUE L		Darryl Pollica	SimpleFuel
SCS-010	R&D for Safety, Codes and Standards: Hydrogen Behavior	Ethan Hecht	SNL
TV-016	Stationary Fuel Cell Evaluation	Genevieve Saur	NREL
TV-020	Validation of an Advanced High Pressure PEM Electrolyzer and Composite Hydrogen Storage, with Data Reporting, for SunHydro Stations	Larry Moulthrop	Proton OnSite
TV-021	Material Handling Equipment Data Collection and Analysis	Christopher Ainscough	NREL

Project ID	Project Title	Principal Investigator Name	Organization
TV-024	CSULA Hydrogen Refueling Facility Performance Evaluation and Optimization	David Blekhman	California State University Los Angeles (CSULA)
TV-038	Overview of an Integrated Research Facility for Advancing Hydrogen Infrastructure	Michael Peters	NREL