Battelle Vince Contini Fritz Eubanks Mike Jansen Mike Heinrichs Paul George Mahan Mansouri

Stationary and Emerging Market Fuel Cell System Cost Analysis – Primary Power and Combined Heat and Power Applications FC097 06/09/2015 Washington D.C.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Battelle The Business of Innovation

Overview – Program Details

Timeline						Budg	et	(DOE Project	Fundi	ng)	
	Start			\bigcirc	End				\bigcirc		Total
	Oct 2011			FY15 (BP4)	Jan 2017				\$343ł FY15 Fu	K Inding	\$2 M
	Total Fund	ing Spent	\$1,63	4K as c	of 3/31/16			FY	16 Funding \$37	7K	
(Collaborate	ors									
	have provic	led desig	n input	ts, cost	inputs, de	esign	review,	ar	nd manufacturin	g cost	review
•	Hydrogenics	Trante	er •	John	son Matth	ey/Ca	tacel	•	Watt Fuel Cell •	Outba	ack Power
•	Nexceris	• Panas	onic •	Adva	nced Pow	er As	sociates	5•	Vicor Power	Techr	nologies
•	Ballard	• US Hy	vbrid •	Zahn	Electronic	CS		•	SMA-America •	Ideal	Power
•	Dry Coolers	 Innova 	atek •	API	leat Trans	sfer		•	Cain Industries		
				E	Barriers A	ddres	ssed				
Cost reduction of fuel cel components and material			cell rials	Mar	nufacturing	g capa	ability		Customer ad	cceptar	nce

Relevance – Program Objective

5-year program to assist DOE in developing fuel cell systems for stationary and emerging markets by developing independent models and cost estimates

- Applications Primary (including CHP) power, backup power, APU, and material handling equipment
- Fuel Cell Types 80°C PEM, 180°C PEM, SOFC technologies
- Annual Production Volumes 100, 1K, 10K and 50K (only for primary production systems)
- Size 1, 5, 10, 25, 100, 250 kW

In Budget Period 4 (BP4) - 2015

 100 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications

Relevance – Technical Barriers Addressed

Technical Barriers	Project Goals
Cost reduction of fuel cell components and materials	 1. Identify major contributors to fuel cell system cost 2. Identify potential cost reduction opportunities
	3. Identify major contributors to fuel cell system manufacturing cost
Manufacturing capability	 Identify areas for manufacturing R&D to improve quality and/or throughput
	5. Provide basis for consideration of transition from other industries
Customer acceptance	6. Develop accurate cost projections that can be used to evaluate total cost of ownership and facilitate early market adoption

Approach – Manufacturing Cost Analysis Methodology

Market Assessment	System Design	Cost Modeling	Sensitivity & Life Cycle Cost Analysis
 Characterization of potential markets Identification of operational and performance requirements Evaluation of fuel cell technologies relative to requirements Selection of specific systems for cost modeling 	 Conduct literature search Develop system design Gather industry input Size components Gather stakeholder input Refine design Develop bill of materials (BOM) Define manufacturing processes Estimate equipment requirements 	 Gather vendor quotes Define material costs Estimate capital expenditures Determine outsourced component costs Estimate system assembly Develop preliminary costs Gather stakeholder input Refine models and update costs 	 Sensitivity analysis of individual cost contributors Life cycle cost analysis to estimate total cost of ownership

Progress & Accomplishments – Representative LTPEM CHP system

Battelle The Business of Innovation

Progress & Accomplishments – Representative SOFC CHP system

Progress & Accomplishments – Electrical System Schematic (Hybrid Inverter)

Progress & Accomplishments – Nominal Design Basis

Metric/Feature	Objective
Input, Fuel	Utility Natural Gas or Propane
	(>30 psig preferred)
Input, Air	Ambient air (-20° to 50°C)
Input, Other	N/A
Output	120/240 VAC
	480 3-phase VAC
Net Power Output	100, 250 kW
System Efficiency (electrical)	
LTPEM	30%
SOFC	40%
System Efficiency Overall	
LTPEM	80%
SOFC	90%
System Life	50,000 hours
System Maintenance Interval	1
(filter change: sulfur trap, air filter, fuel filter)	i year
Grid Connection	Yes, local and/or utility
Operate off-grid	Yes, critical load back-up
Start off-grid	No

Progress & Accomplishments –PEM Fuel Cell Design Parameters

Parameter	100 kW System	250 kW System			
Power Density (W/cm ²)	0.27				
Current Density (A/cm ²)	0.4				
Cell Voltage (VDC)).68			
Active Area Per Cell (cm ²)	780	780			
System Net Power (kW)	100	250			
System Gross Power (kW)	120	300			
Number and Size of Stacks per System	2 x 60 kW (gross)	6 x 50 kW (gross)			
Number of Cells per stack	283	236			
Full Load Stack Voltage (VDC)	192	160			
Membrane Base Material	PFSA, 0.2mm th	ck, PTFE reinforced			
Catalyst Loading	0.4 mg Pt/cm ² (total)				
	Cathode is 2:1 relative to Anode				
Catalyst Application	Catalyst ink applied	I with selective slot die			
	coating deposition, h	eat dried, decal transfer			
Gas diffusion layer (GDL) Base Material	Carbon pap	er 0.2 mm thick			
GDL Construction	Carbon paper dip-coated wi	th PTFE for water management			
Membrane electrode assembly (MEA)	Hot press	s and die cut			
Construction					
Seals	1 mm silicone	, injection molded			
Stack Assembly	Hand assem	bled, Machined			
	pressed before tie rod installation				
Bipolar Plates	Graphite composite	e, compression molded			
End Plates	Sand cast and mad	chined A356 aluminum			

Progress & Accomplishments –SOFC Fuel Cell Design Parameters

Parameter	100 kW	250 kW			
Cell Power Density (W/cm ²)	0.28				
Cell Current Density (A/cm ²)	0.	4			
Cell Voltage (VDC)	0.	7			
Active Area Per Cell (cm ²)	414	414			
System Net Power (kW,	100	250			
continuous)					
System Gross Power (kW,	120	300			
Number and Size of Stacks per	$4 \times 30 kW (arcs)$	$10 \times 30 kW (arcs)$			
System	4 X 30 KW (gross)	10 X 30 KW (gloss)			
Number of Cells per Stack	259	259			
Stack Open Circuit Voltage (VDC)	285	285			
Full Load Stack Voltage (VDC)	181	181			
Cell Design	Planar, Anod	le supported			
Anode Material	Ni-YSZ, 500 µm thick (2 layers 250 µm thick)			
Anode Application	Tape cas	t, kiln fire			
Anode Active Layer Material	Ni-YSZ, 1	5 µm thick			
Anode Active Layer Application	Screen Pri	nt, kiln fire			
Anode Contact Layer Material	Ni-YSZ, 10) μm thick			
Anode Contact Layer Application	Screen Pri	nt, kiln fire			

Progress & Accomplishments –SOFC Fuel Cell Design Parameters

Parameter	100 kW	250 kW			
Electrolyte Material	YSZ, 8 µm thick				
Electrolyte Application	Screen pri	nt, kiln fire			
Cathode Active Layer Material	YSZ/LSM,	5µm thick			
Cathode Active Layer	Screen Pri	nt, kiln fire			
Application					
Cathode Material	LSCF, 30	µm thick			
Cathode Application	Screen Print, kiln fire				
Cathode Contact Layer Material	LSM/YSZ, 10 µm thick				
Cathode Contact Layer	Screen Print, kiln fire				
Application					
Seals	Wet application bor	nded glass/ceramic			
Stack Assembly	Hand Assembled, tie	rods, furnace brazed			
Interconnects	Ferritic Stainless Steel (SS-441) with				
	Perovskite coati	ng, 2-3 µm thick			
Anode/Cathode Spacer Frames	Ferritic Stainless	s Steel (SS-441)			
Anode/Cathode Mesh	Corrugated expar	nded foil (SS-441)			
End Plates	Sand Cast and Ma	chined Hastelloy X			

Progress & Accomplishments – Methodology for Calculating Manufacturing Costs

- Use the Boothroyd-Dewhurst DFMA[®] estimating software for standard process models whenever they exist
- Developed custom models as needed

- Custom Model Development Process
 - Develop model approach and process flow
 - Perform preliminary model analysis
 - Inputs and calculations required to produce cost outputs
 - Independent verification of viability and accuracy
 - Implement model in Excel
 - Develop model using DFMA[®] principles and methods
 - Validate model results against preliminary cost analysis results

Battelle The Business of Innovation

Progress & Accomplishments – PEM Stack Component Cost Summary

	60	kW Stack –	100 kW Sys	stem	50k	W Stack – 2	250 kW Syst	tem
Stack Components	100 Units (\$/each)	1,000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	100 Units (\$/each)	1,000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
MEA	\$27,345	\$12,351	\$7,270	\$5,867	\$16,173	\$8,072	\$5,295	\$4,543
Anode / Cooling Gasket	\$517	\$438	\$394	\$388	\$405	\$347	\$325	\$324
Cathode Gasket	\$266	\$196	\$173	\$169	\$174	\$155	\$143	\$140
Anode Bipolar Plate	\$2,488	\$1,591	\$1,461	\$1,456	\$1,340	\$1,241	\$1,214	\$1,212
Cathode Bipolar Plate	\$2,350	\$1,450	\$1,320	\$1,315	\$1,222	\$1,123	\$1,096	\$1,095
End plates	\$111	\$73	\$49	\$40	\$83	\$70	\$49	\$38
Assembly hardware	\$438	\$410	\$383	\$366	\$424	\$397	\$371	\$354
Assembly labor	\$188	\$166	\$164	\$164	\$144	\$138	\$138	\$138
Test and conditioning	\$1,436	\$231	\$160	\$159	\$542	\$169	\$153	\$151
Total Cost per Stack	\$35,140	\$16,906	\$11,375	\$9,925	\$20,507	\$11,713	\$8,784	\$7,994
Cost per kW _{net}	\$703	\$338	\$227	\$198	\$492	\$281	\$211	\$192

All costs include manufacturing scrap

PEM Fuel Cell Stack Volume Trends

Battelle The Business of Innovation

Progress & Accomplishments – CHP PEM BoP Manufacturing Cost

	100 kW				250 kW			
BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Fuel Supply	\$10,102	\$8,286	\$7,324	\$6,741	\$14,879	\$12,452	\$11,166	\$10,358
Water Supply	\$3,341	\$3 <i>,</i> 095	\$2,980	\$2,872	\$3,340	\$3,144	\$3,023	\$2,915
Fuel Processing	\$55,616	\$48,005	\$43,629	\$41,395	\$94,462	\$79,221	\$70,458	\$66,491
Air Supply	\$12,390	\$11,476	\$10,590	\$10,009	\$17,254	\$15,851	\$14,473	\$13,607
Heat Recovery	\$37,440	\$33,994	\$30,868	\$29,466	\$56,215	\$51,218	\$46,680	\$44,665
Power Electronics	\$50,894	\$41,757	\$33 <i>,</i> 934	\$28,568	\$114,436	\$91 <i>,</i> 898	\$72,617	\$59,454
Instrumentation and Control	\$1,642	\$1,464	\$1,324	\$1,291	\$2,622	\$2,340	\$2,108	\$2,055
Assembly Components	\$14,400	\$13,090	\$11,780	\$10,605	\$22,540	\$20,490	\$18,440	\$16,600
Additional Work Estimate	\$15,100	\$13,700	\$12,300	\$11,100	\$24,300	\$22,100	\$19,900	\$17,900
BOP Total	\$200,924	\$174,868	\$154,728	\$142,047	\$350,048	\$298,714	\$258,865	\$234,045

Progress & Accomplishments – CHP PEM BoP Manufacturing Cost

250 kW Systems (1,000 units/yr)

 Control and Instrumentation

Power Electronics

Fuel supply

Water Supply

Fuel Processor

Heat Recovery

Air Supply

- Assembly Comp
- Additional Work Estimate

100 kW Systems (50,000 units/yr)

250 kW Systems (50,000 units/yr)

Battelle The Business of Innovation

Progress & Accomplishments – 100 kW CHP PEM Fuel Cell System Cost Summary

Description	100 Units/Year	1,000 Units/year	10,000 Units/Year	50,000 Units/Year
Total Stack Manufacturing	\$73,522	\$34,480	\$23,303	\$20,390
Fuel, Water, and Air Supply Components	\$25,832	\$22,857	\$20,894	\$19,622
Fuel Processor Components	\$55,616	\$48,005	\$43,629	\$41,395
Heat Recovery Components	\$37,440	\$33,994	\$30,868	\$29,466
Power Electronic, Control, and Instrumentation Components	\$52,536	\$43,221	\$35,258	\$29,859
Assembly Components and Additional Work Estimate	\$29,500	\$26,790	\$24,080	\$21,705
Total system cost, pre-markup	\$274,446	\$209,348	\$178,032	\$162,438
System cost per KW _{net} , pre-markup	\$2,744	\$2,093	\$1,780	\$1,624
Sales markup	50%	50%	50%	50%
Total system cost, with markup	\$411,670	\$314,021	\$267,048	\$243,657
System cost per KW _{net} , with markup	\$4,117	\$3,140	\$2,670	\$2,437

Progress & Accomplishments – 250 kW CHP PEM Fuel Cell System Cost Summary

Description	100 Units/Year	1,000 Units/year	10,000 Units/Year	50,000 Units/Year
Total Stack Manufacturing	\$126,587	\$71,151	\$53,494	\$48,737
Fuel, Water, and Air Supply Components	\$35,472	\$31,447	\$28,662	\$26,881
Fuel Processor Components	\$94,462	\$79,221	\$70,458	\$66,491
Heat Recovery Components	\$56,215	\$51,218	\$46,680	\$44,665
Power Electronic, Control, and Instrumentation Components	\$117,058	\$94,238	\$74,725	\$61,509
Assembly Components and Additional Work Estimate	\$46,840	\$42,590	\$38,340	\$34,500
Total system cost, pre-markup	\$476,635	\$369,865	\$312,359	\$282,782
System cost per KW _{net} , pre-markup	\$1,906	\$1,479	\$1,249	\$1,131
Sales markup	50%	50%	50%	50%
Total system cost, with markup	\$714,952	\$554,797	\$468,538	\$424,174
System cost per KW _{net} , with markup	\$2,860	\$2,219	\$1,874	\$1,697

Progress & Accomplishments – CHP PEM Fuel Cell System Cost Summary (1,000 units/year)

Progress & Accomplishments – CHP PEM Fuel Cell System Cost Comparison

DOE Target (2015) – \$2,300/kW, (2020) – \$1,000/kW

Progress & Accomplishments – SOFC Stack Manufacturing Cost

	30 kV	V Stack -	100 kW	System	30 kV	V Stack - 2	250 kW Sy	stem
	100	1,000	10,000	50,000	100	1,000	10,000	50,000
Ceramic Cells	\$4,749	\$3,476	\$3,147	\$3,110	\$3,912	\$3,229	\$3,115	\$3,103
Interconnects	\$987	\$610	\$413	\$413	\$852	\$477	\$418	\$411
Anode Frame	\$375	\$356	\$349	\$348	\$364	\$357	\$349	\$348
Anode Mesh	\$301	\$214	\$183	\$183	\$269	\$186	\$184	\$183
Cathode Frame	\$131	\$114	\$109	\$108	\$121	\$114	\$109	\$108
Cathode Mesh	\$304	\$217	\$186	\$186	\$272	\$189	\$186	\$186
Picture Frame	\$149	\$126	\$121	\$121	\$136	\$126	\$121	\$120
Laser Weld	\$355	\$84	\$84	\$84	\$142	\$84	\$84	\$84
Glass Ceramic Sealing	\$1,295	\$557	\$504	\$501	\$742	\$522	\$501	\$501
End Plates	\$885	\$803	\$735	\$733	\$878	\$764	\$733	\$733
Assembly hardware	\$207	\$194	\$181	\$173	\$202	\$188	\$176	\$168
Assembly labor	\$200	\$188	\$187	\$187	\$192	\$187	\$187	\$187
Stack Brazing	\$82	\$78	\$56	\$50	\$80	\$67	\$50	\$50
Test and conditioning	\$1,360	\$750	\$688	\$685	\$934	\$705	\$686	\$684
Total Cost per Stack	\$11,380	\$7,767	\$6,945	\$6,882	\$9,101	\$7,195	\$6,899	\$6,866

All costs include manufacturing scrap

SOFC Fuel Cell Stack Volume Trends

Battelle The Business of Innovation

Progress & Accomplishments – CHP SOFC BoP Manufacturing Cost

	100 kW				250 kW			
BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Fuel Supply	\$4,449	\$3,106	\$2,663	\$2,470	\$7,953	\$6,093	\$5,372	\$4,815
Fuel Processing	\$8,245	\$5 <i>,</i> 693	\$5,247	\$4,962	\$14,347	\$9,797	\$8,604	\$8,253
Air Supply	\$5,659	\$5,200	\$4,801	\$4,486	\$10,345	\$9,607	\$8,937	\$8,741
Heat Recovery	\$21,057	\$19,698	\$18,430	\$17,621	\$33,857	\$31,718	\$29,718	\$28,470
Power Electronics	\$50,894	\$41,757	\$33,934	\$28,568	\$114,436	\$91,898	\$72,617	\$59,454
Instrumentation and Control	\$2,094	\$1,870	\$1,688	\$1,645	\$3,526	\$3,152	\$2,836	\$2,763
Assembly Components	\$4,705	\$4,280	\$3,855	\$3,475	\$7,710	\$7,010	\$6,310	\$5 <i>,</i> 680
Additional Work Estimate	\$6,400	\$5,800	\$5,200	\$4,700	\$11,400	\$10,400	\$9,400	\$8,500
BOP Total	\$103 <i>,</i> 503	\$87,405	\$75,818	\$67,927	\$ <mark>203,575</mark>	\$169,675	\$143,79 3	\$126,677

Progress & Accomplishments – CHP SOFC BoP Manufacturing Cost

The Business of Innovation

- Fuel supply
- Fuel Processor
- Air Supply
- Heat Recovery
- Power Electronics
- Control and Instrumentation
 Assembly Comp
- Additional Work Estimate

Progress & Accomplishments – 100 kW CHP SOFC Fuel Cell System Cost Summary

Description	100	1,000	10,000	50,000
Description	Units/Year	Units/year	Units/Year	Units/Year
Total Stack Manufacturing	\$48,191	\$32,005	\$28,537	\$28,273
Fuel and Air Supply Components	\$10,108	\$8,306	\$7,465	\$6,956
Fuel Processor Components	\$8,245	\$5,693	\$5,247	\$4,962
Heat Recovery Components	\$21,057	\$19,698	\$18,430	\$17,621
Power Electronic, Control, and	\$52 088	¢13 627	\$35 622	\$30,213
Instrumentation Components	φ <u></u> υ <u>2</u> ,900	φ 4 3,027	ψ00,022	φ30,213
Assembly Components and	\$11,105	\$10,080	\$9,055	\$8,175
Additional Work Estimate				
Total system cost, pre-markup	\$151,694	\$119,410	\$104,354	\$96,200
System cost per KW _{net} ,	¢1 517	¢1 101	¢1 011	\$962
pre-markup	φι,σι/	φ1,134	φ1,044	φ302
Sales markup	50%	50%	50%	50%
Total system cost, with markup	\$227,541	\$179,115	\$156,532	\$144,300
System cost per KW _{net} ,	\$2 275	\$1 791	\$1 565	\$1 //3
with markup	φΖ,ΖΤΟ	φ1,731	φ1,505	ψ1,445

Progress & Accomplishments – 250 kW CHP SOFC Fuel Cell System Cost Summary

Description	100	1,000	10,000	50,000
	Units/ rear	Units/ rear	Units/ rear	Units/ rear
Total Stack Manufacturing	\$94,814	\$73,566	\$70,452	\$70,113
Fuel and Air Supply Components	\$18,298	\$15,700	\$14,309	\$13,556
Fuel Processor Components	\$14,347	\$9,797	\$8,604	\$8,253
Heat Recovery Components	\$33,857	\$31,718	\$29,718	\$28,470
Power Electronic, Control, and	\$117,962	\$95,050	\$75,453	\$62,217
Assembly Components and	\$19,110	\$17,410	\$15.710	\$14,180
Additional Work Estimate	¢ 10, 110	• · · · • · · • •	÷,	<i>•••••••••••••••••••••••••••••••••••••</i>
Total system cost, pre-markup	\$298,389	\$243,241	\$214,244	\$196,789
System cost per KW _{net} , pre-markup	\$1,194	\$973	\$857	\$787
Sales markup	50%	50%	50%	50%
Total system cost, with markup	\$447,583	\$364,861	\$321,367	\$295,184
System cost per KW _{net} , with markup	\$1,790	\$1,459	\$1,285	\$1,181

Progress & Accomplishments – CHP SOFC Fuel Cell System Cost Summary (1,000 units/year) Assembly 100 kW SOFC Systems

Progress & Accomplishments – CHP SOFC Fuel Cell System Cost Comparison

DOE Target (2015) – \$2,300/kW, (2020) – \$1,000/kW

Progress & Accomplishments – Results Summary

- BOP costs dominate system cost
- Within BOP costs
 - Power electronics is a major contributor for both technologies
 - Heat recovery and fuel processing contribute significantly for PEM systems
- An attractive value proposition exists
 - Under high spark-spread utility rate conditions
 - Improved if able to utilize waste heat
- Manufacturing Readiness Level (MRL) for many BOP components not ready for mass production – significant cost driver
 - DFMA[®] performed on specific components (Fuel Processing, Stack) assumes technology > MRL 9

Progress & Accomplishments – Response to Previous Year Reviewers' Comments

- FY15 Reviewer comment: "Batteries are used only in cases of black-start capability and off-grid operation. Those are rather exotic applications, especially for urban markets. The majority of urban markets are rather unlikely to have such systems and would not justify the expense."
 - Clarification Batteries are not for black start, but rather to accommodate load following. Although the grid could assist with this, overwhelming feedback suggests that back-up power (covering critical loads) would be an important feature.
- FY15 Reviewer comment: "Overall efficiency of 80% for LT-PEM seems excessive. The low-quality heat from the PEM system makes thermal recovery limited."
 - Although the heat quality of the PEM system is not as high as with the SOFC system, because of the reformer, the temperatures available are higher than with a direct hydrogen system. Feedback has been mixed on this subject, with some saying 80% is too high and other saying it is too low."
- FY15 Reviewer comment: "It was unclear whether the project used any thermodynamic process modeling. If not, there is plenty to tap into, and these models are absolutely necessary for component sizing."
 - We agree...ChemCad was used for thermodynamic process modeling and incorporated into component sizing.

Collaborations

The following list of companies is a sampling of those that provided support for the CHP and Primary Power effort. A complete list is on slide 2.

- Johnson Matthey/Catacel
 - System Design Review/Feedback
 - Fuel Processing technology review/feedback
- Nexceris
 - System Design Review/Feedback
 - SOFC technology assessment
- Tranter
 - BOP design guidance
- Ballard
 - System Design Review/Feedback
- Panasonic
 - System Design Review/feedback
 - BOP design guidance

Proposed Future Work

Budget Period 5

 Revisit all applications in previous 4 budget periods and update reports

Summary

- **Relevance:** Help answer questions on opportunities for cost reduction to penetrate non-automotive applications
- Approach: Perform cost modeling including DFMA[®] analysis of a generic fuel cell system design developed for the application
- Technical Accomplishments and Progress: Completed cost analysis of 100 and 250 kW fuel cell systems for primary power and combined heat and power applications
- Technology Transfer/Collaborations: Working with a number of industry collaborators (e.g., Johnson Matthey/Catacel, Nexceris, Ballard) for design inputs, cost inputs, design review and results review
- **Proposed Future Research:** Revisit all applications in previous 4 budget periods and update all reports

