

A Total Cost of Ownership Model for Design and Manufacturing Optimization of Fuel Cells in Stationary and Emerging Market Applications

U.S. Department of Energy Annual Merit Review for Fuel Cell Research

Washington, D.C.

June 2016

Max Wei (P.I.)

Lawrence Berkeley National Laboratory

Project ID # FC098

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview AMR 2015

Timeline

Project start date: Oct 2011

Project end date: Sept 2016

Percent complete: 90%

Budget

Total project funding

DOE share: 1.9M

Contractor share: n.a.

FY16 DOE Funding: 100k

DOE Cost Targets

Characteristic	2015 Target	2020 Target
10kW CHP System	\$1900/kW	\$1700/kW
100kW CHP System	\$2300/kW	\$1000/kW

Barriers Addressed

- Fuel-cell cost: expansion of cost envelope to total cost of ownership including full life cycle costs and externalities (MYPP 3.4.5B)
- Lack of High-Volume Membrane Electrode Assembly Processes (MYPP 3.5.5A)
- Lack of High-Speed Bipolar Plate Manufacturing Processes (MYPP 3.5.5B)

Partners

- University of California Berkeley
 - Department of Mechanical Engineering Laboratory for Manufacturing and Sustainability
 - Transportation Sustainability Research Center
- Strategic Analysis
- Other Industry Advisors and Experts

Relevance & Goals

Total-cost-of-ownership (TCO) modeling tool for design and manufacturing of fuel cells in stationary and materials-handling systems in emerging markets

Expanded framework to include life-cycle analysis (LCA) and possible ancillary financial benefits, including:

 carbon credits, health/environmental externalities, end-of-life recycling, reduced costs for building operation

Identify system designs that meet lowest manufacturing cost and TCO goals as a function of application requirements, power capacity, and production volume

Provide capability for sensitivity analysis to key cost assumptions

BARRIERS

- High capital and installation costs with a failure to address reductions in externalized costs and renewable energy value
- Potential policy and incentive programs may not value fuel cell (FC) total benefits.

Overview: Chemistries and Applications

Fuel cell types to be considered:

- —Conventional, low-temp (~80° C) PEM fuel cell (LTPEM)
- —High-temp (~180° C) PEM fuel cell (HTPEM)
- —Solid oxide fuel cell (SOFC)

Application Space:

APPLICATION	SIZE [KW]	PRODUCTION VOLUME (UNITS/YEAR)				
		100	1000	10,000	50,000	
STATIONARY POWER (P);	1	С	С	С	С	
COMBINED HEAT AND POWER						
(C)	10	P, C	P, C	P,C	P,C	
	50	P,C	P,C	P,C	P,C	

2016 AOP

			BERKELEY LAB
	Quarter	Milestones/Deliverables Description	Go/No-Go Criteria
	Q3'15	Policy and energy system scenario analysis completed for LT PEM total cost models for CHP and backup power systems	Done
	Q4'15	Total cost of ownership model and report completed for SOFC systems	Total cost of ownership model satisfactorily completed for SOFC systems along with a report describing this work. (October 2015)
	Q1'16	Policy and energy system scenario analysis completed for SOFC total cost models for stationary power and CHP power systems	Done
	Q2'16	Revision of SOFC total cost of ownership model, including low power CHP systems (≤10kW), lower volume costing, sensitivity analysis, and cost benchmarking with other studies and available market data.	Done
	Q3'16	Revision of LT PEM] total cost of ownership model, including low power CHP systems, lower volume costing, sensitivity analysis, and cost benchmarking with other studies and available market data.	In Progress
Pi	Q4'16	Complete final LBNL reports for LT PEM and SOFC total cost of ownership models	Project completion

С

Approach: TCO Model Structure and Key Outputs

Assumptions:

Application/ Size
Mfg Volume/Yr
Location (mfg, op)
Prices
Policies
Fuel input
Outages/Lifetimes

Total Cost of Ownership (TCO) Model

Manufacturing Cost Model

Direct mfg costs Indirect mfg costs

Lifecycle Cost Model

Capital/installation
Fuel and operations
Maintenance
Stack replacements
End of life

Life Cycle Impact Assessment Models

Monetized health and GHG impacts

Key Outputs:

- 1) System manufacturing costs and "factory gate" prices
- 2) TCO Metrics: Levelized costs (/kWh), Total costs/yr
- 3) TCO including broader social costs

1 - Costing Approach

Direct Manufacturing Costs

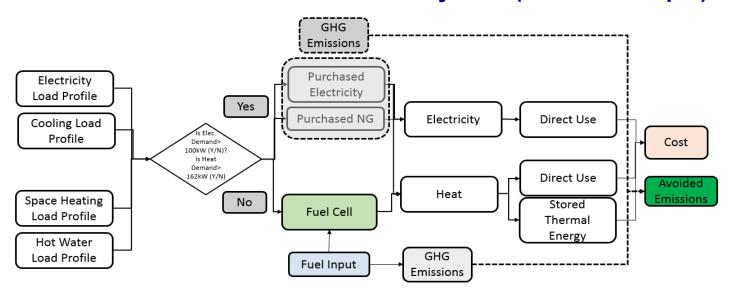
- Capital costs
- Labor costs
- Materials costs
- Consumables
- Scrap/yield losses
- Factory costs

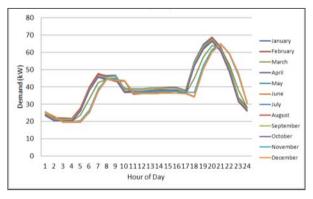
Global Assumptions

- Discount rate, inflation rate
- Tool lifetimes
- Costs of energy, etc.

Other Costs:

- R&D costs, G&A, sales, marketing
- Product warranty costs



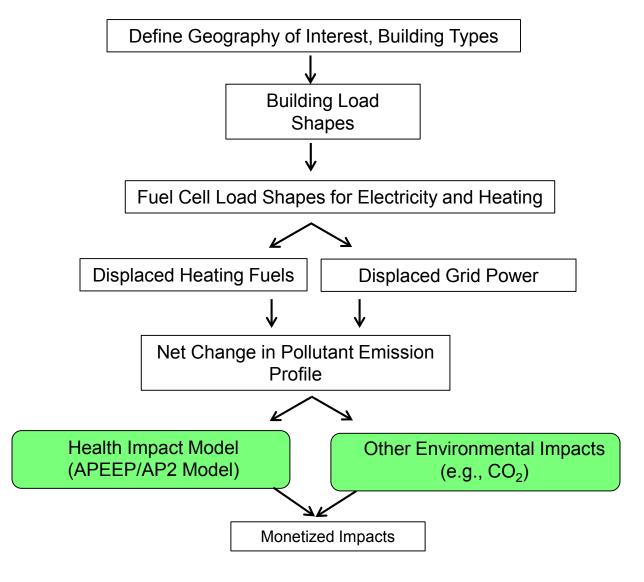

Source: Altergy Systems

2 - Fuel Cell System Life Cycle Cost (Use Phase) Modeling

Combined Heat & Power Fuel Cell System (100kW example)

20
WW Ppe 15

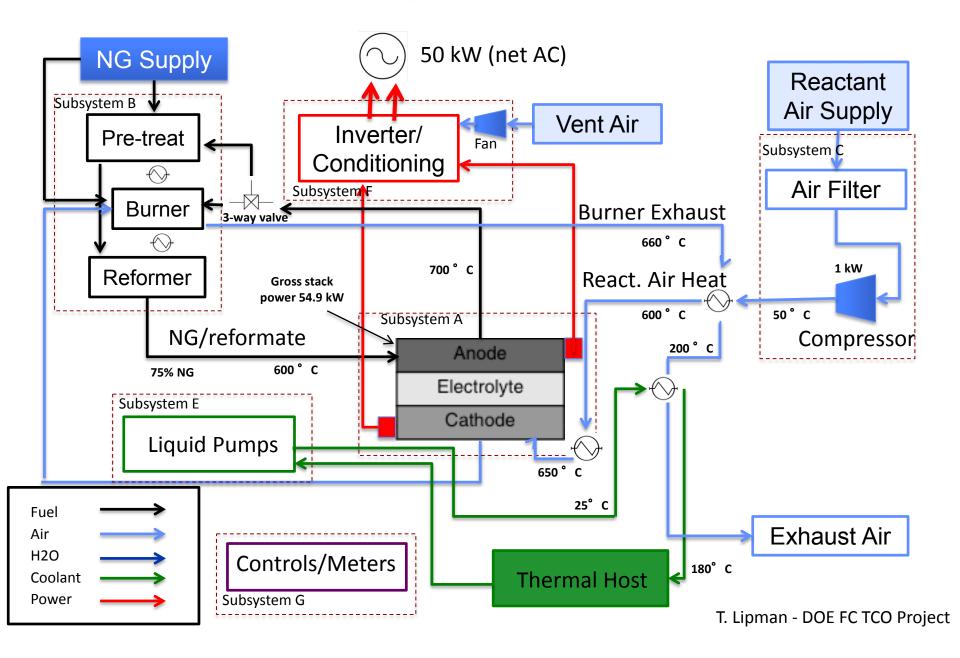
20


March
— April
— March
— April
— May
— August
— July
— August
— October
— October
— November
— December
— December

Daily electricity load profiles for small hotel in AZ

Daily hot water load profiles for small hotel in AZ

3 - Life-Cycle Impact Assessment for Environmental and Health Externalities – Fuel Cell CHP Systems



TECHNICAL PROGRESS: SOFC FC SYSTEM MANUFACTURING COST

50 kW SOFC CHP System with Reformate Fuel

CHP System Designs and Functional Specs

DFMA Manufacturing approaches for SOFC CHP and Power systems, anode-supported cell

Component	Primary Approach	Reference
Anode*	Ni / YSZ Tape casting	Patent review, Industry input
Interlayer*	Ni 50% / YSZ 50% Screen printing	Patent review, Industry input
Electrolyte*	YSZ – Screen printing	Literature, patents, industry input
Interlayer*	LSM 50 %/ YSZ 50% - Screen printing	Literature, patents, industry input
Cathode*	Conducting Ceramic– Screen printing	Literature, industry input
Plates*	Stamped metal plates with SS441	Literature, patents, industry input
Seal/Frame MEA*	Framed EEA	Patents, industry input
Stack Assembly*	Partial to fully automated	Patents, Industry input
Endplate/ Seals*	Metal endplate	Industry input, literature
Test/Burn-in	Post Assembly 3 hrs	Industry input

^{*}Full DFMA Costing analysis was performed

Functional Specs 50kW CHP with Reformate Fuel

50 kW Size		Best. Ests.		<u>Source</u>
	Unique Properties:		Units:	
<u>System</u>	Gross system power	54.9	kW DC	
	Net system power	50	kW AC	
•	Physical size	2x3x3	meter x meter x meter	Based on Bloom ES-5700 - Not incl. CHP eqpt
	Physical weight	3600	kg	Based on Bloom ES-5700 - Not incl. CHP eqpt
	Electrical output	480V AC	Volts AC or DC	
	DC/AC inverter effic.	95.5%	%	FCE 2013
	Waste heat grade	220	Temp. °C	From ~800 C. stack after air pre-heat
	Fuel utilization % (first pass)	85%	%	CFCL 2014
	Fuel input power (LHV)	84.23	kW	
	Stack voltage effic.	64%	% LHV	function of cell voltage
	Gross system electr. effic.	65.1%	% LHV	
	Avg. system net electr. effic.	59.4%	% LHV	CFCL 2014 60% electr. Eff.
	Thermal efficiency	24.4%	% LHV	70% recovery of avail. Heat
	Total efficiency	83.8%	Elect.+thermal (%)	FCE = 83.4% LHV; CFCL 82%
Stack	Stack power	54.86	kW	
	Total plate area Actively catalyzed area	540 329	cm^2 cm^2	Nextech for 10 kW: active=300 cm2; VersaPower 25x25 cm2 Est. 61% of tot. plate area
	Single cell active area	299	cm^2	10% less than CCM area
	Gross cell inactive area	45	%	10 % less than COM area
	Cell amps	105	A	
	Current density	0.35	A/cm^2	James 2012: 0.364mA/cm2
	· ·		V	
	Reference voltage	0.8		From James 2012 DOE
	Power density	0.282	W/cm^2	James 2012: 0.291 W/cm2
	Single cell power	84	W	Nextech: 103 W/cell
	Cells per stack	130	cells	
•	Percent active cells	100	%	
Δ	Stacks per system	5	stacks	

Updated SOFC direct manufacturing model from 2015 AMR

- Updated material costs
- Updated EEA module, plate costing and frame process sequence, process yield assumptions
- Detailed review of several modules with equipment vendors
- Similar overall bottom line costs to last year, with some reduction at high volumes as noted below

Materials Prices: Updates from 2015 to lower prices at high volumes

Table 4.4. Anode	e-supported o	ell material	prices
------------------	---------------	--------------	--------

14	ole 4.4. Anode-sup	ported cen n	meerina price	
Vendor/Country	Material	Order quantity (kg)	Price (\$/kg)	Comments
AIICHI JITSUGYO	Nickel Oxide	1000	68.5	CIF USA by sea
(Japan)		5000	42.5	CIF USA by sea
		10000	37	CIF USA by sea
		20000	34	CIF USA by sea
AIICHI JITSUGYO	8YSZ	100	78	CIF USA by sea
(Japan)	(8mol%YSZ)	1000	68	CIF USA by sea
		5000	63	CIF USA by sea
Daiichi (Japan)	8YSZ	10	97	CIF USA by sea
	(8mol%YSZ)	100	95	CIF USA by air
		1000	83	CIF USA by sea
Inframat Advanced	8YSZ (8mol%YSZ)	1	139.2	by rail or truck
Materials (USA)		5	115.8	by rail or truck
		10	94.5	by rail or truck
		50	71.6	by rail or truck
		100	49.7	by rail or truck
		1000	35.2	by rail or truck
		10000	29.8	by rail or truck
Inframat Advanced	LSM powder	100	170	by rail or truck
Materials (USA)		1000	95	by rail or truck
		10000	70	by rail or truck
Qingdao Terio	LSM powder	10	250	CIF USA by air
Corporation		100	150	CIF USA by air
(China)		200	125	CIF USA by air
		500	105	CIF USA by air
		1000	80	CIF USA by air
		2000	75	CIF USA by air
		5000	60	CIF USA by air

CIF = price including cost, insurance and freight

Key updates from 2015:

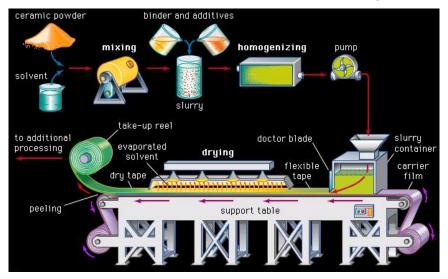
8YSZ price 50% lower at high volume (\$60/kg 2015 value to \$29.80/kg)

LSM powder price 60% lower price at high volume (\$150/kg value to \$60/kg)

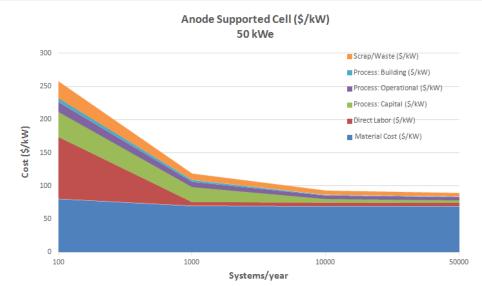
Yield assumptions updated from 2015

Process Yield assumptions, 2015

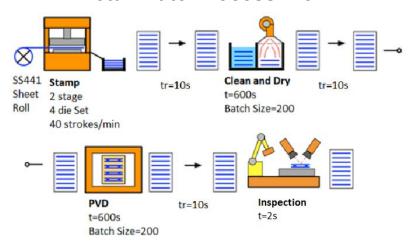
FC Size (kW)	10	10	10	10
Annual Production				
Volume	100	1,000	10,000	50,000
EEA Yield	95.00%	96.00%	97.00%	98.00%
Interconnect & Frame	85.00%	85.65%	92.67%	97.91%
Seal	85.00%	85.77%	92.79%	98.04%
Assembly	99.5%	99.5%	99.5%	99.5%
Stack Average Yield	89.8%	90.3%	95.0%	98.5%

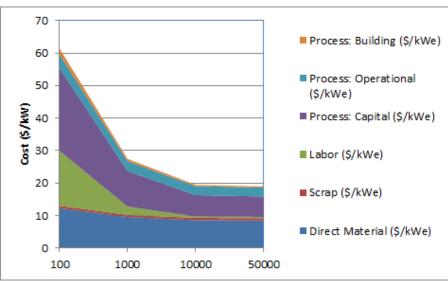

FC Size (kW)	50	50	50	50
Annual Production				
Volume	100	1,000	10,000	50,000
EEA Yield	96.00%	97.00%	98.00%	99.00%
Interconnect & Frame	85.00%	90.50%	97.91%	99.50%
Seal	85.00%	90.62%	98.04%	99.50%
Assembly	99.5%	99.5%	99.5%	99.5%
Stack Average Yield	89.8%	93.5%	98.5%	99.5%

Updated EEA process parameter assumptions

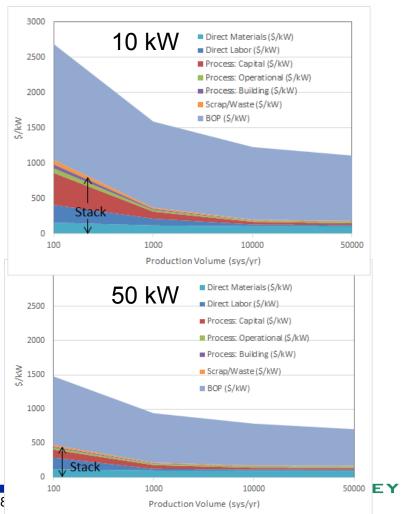

Power	Systems/year	Process Yield (%)	Availability (%)	Line Performance (%)
1	100	85.00%	80.00%	89.00%
	1,000	88.00%	80.00%	89.00%
	10,000	91.00%	80.79%	95.00%
	50,000	92.00%	85.79%	95.00%
10	100	88.00%	80.00%	89.00%
	1,000	91.00%	80.79%	95.00%
	10,000	92.00%	88.04%	95.00%
	50,000	93.00%	93.49%	95.00%
50	100	90.00%	80.00%	89.00%
	1,000	92.00%	85.79%	95.00%
	10,000	93.00%	93.49%	95.00%
	50,000	94.00%	95.00%	95.00%
100	100	91.00%	80.79%	95.00%
	1,000	92.00%	88.04%	95.00%
	10,000	94.00%	95.00%	95.00%
	50,000	95.00%	95.00%	95.00%
250	100	91.00%	83.60%	95.00%
	1,000	93.00%	91.10%	95.00%
	10,000	94.00%	95.00%	95.00%
	50,000	95.00%	95.00%	95.00%

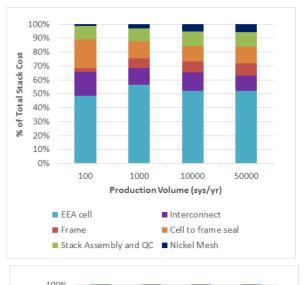
Manufacturing Cost Model – EEA, Metal Plates

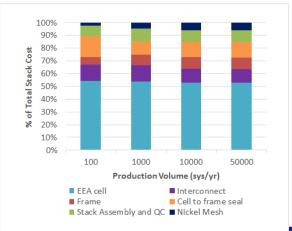

EEA Process Flow-Cathode Coating Line


EEA Cost Plot - 50kW System

Metal Plate Process Flow


Plates Cost Plot - 50kW System




System Cost for 10kW, 50kW CHP SOFC updated

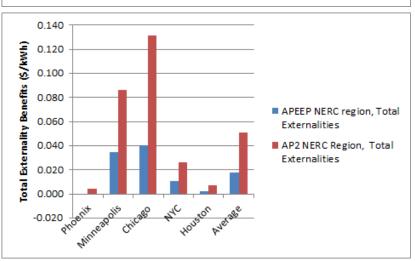
- Stack cost dominated by EEA then seal/frame at lower volumes
- BOP is 60%-80% of overall cost
- System direct cost < \$750/kW at high volumes

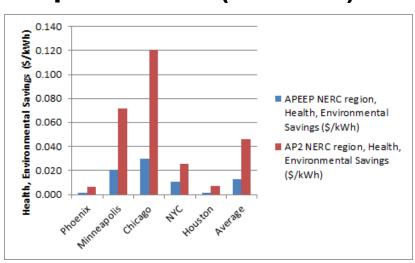
Equipment Cost Estimates vs. DOE Targets

System	Units/yr	2020 DOE Target w/ Markup (\$/kW)	cost (\$/kW) markup cost (\$/kW) (\$/kW)		SOFC direct cost (\$/kW)	SOFC cost with 50% markup (\$/kW)	
		DOE Targets	This V	Vork (last yea	r in paranthesis)		
10kW CHP System	50,000	\$1,700	\$1,724	\$2,586	\$1,170	\$1655 (\$1755)	
100kW CHP System	1000	\$1000	\$1,200	\$1,800	\$940	\$1139 (\$1410)	

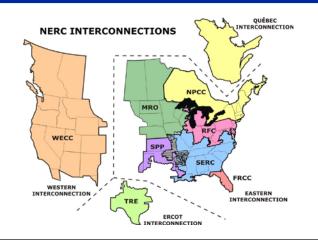
10 kW SOFC system now meeting the 2020 DOE target

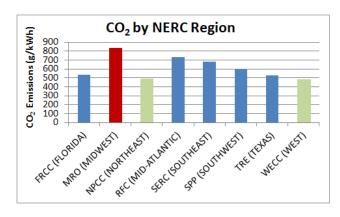



TECHNICAL PROGRESS: LCIA (LIFE CYCLE IMPACT ASSESSMENT) MODEL

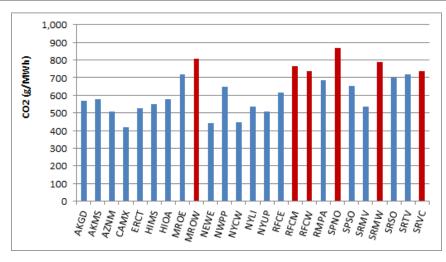

1 - Updated marginal benefits of abatement from APEEP model to AP2 (APEEP2) model

50kW small hotel CHP example shown (LT PEM)

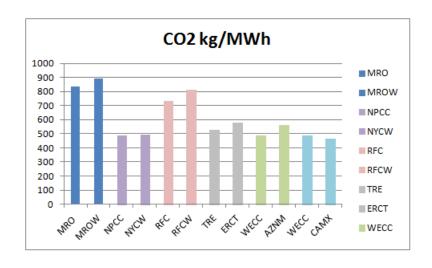

AP2: Health, Environmental benefits are increased by a factor of 3-5X over previous APEEP estimates

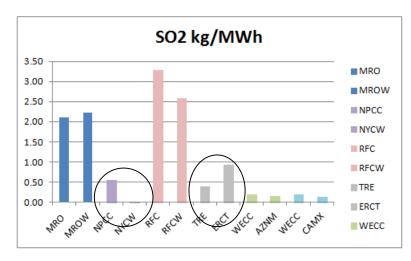

New marginal benefits of abatement are more commensurate with latest estimates from the EPA.

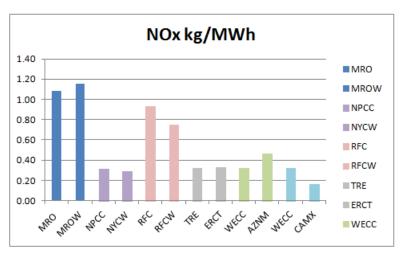
2 - Updated this year – NERC region to eGRID subregional CO2, criterion pollutant emission rates



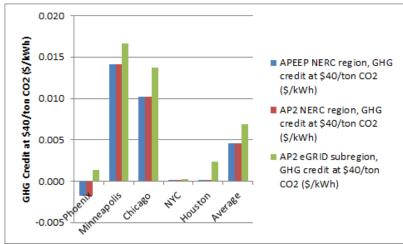
Previous Years:

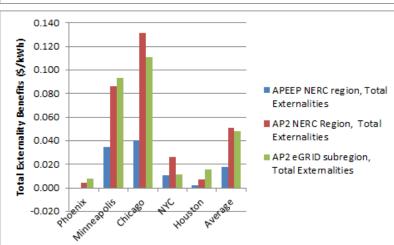


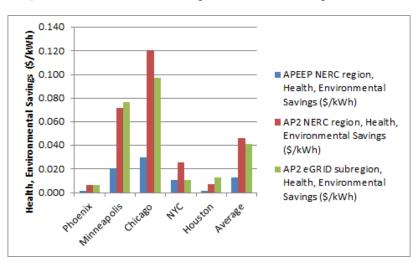



Earlier work used marginal emission factors by NERC region. This year, eGRID subregional emission rates are utilized for improved spatial resolution Note: More than a factor of 2X between regional CO2 emission rates

eGRID subregional emission rates vs NERC-level MEF: reasonable CO2 agreement but local differences in SO2, NOX




- For each pair- first bar is larger NERC region (Old value); 2nd bar eGRID sub-region (updated value)
- Reasonably matched except: SOX much lower in NYC; SOX much higher in Texas (ERCT)


1 + 2: Updated marginal benefits of abatement from APEEP to AP2 (APEEP2) model and updated emission factors from NERC to subregions

50kW small hotel CHP example shown (LT PEM)

GHG benefits are higher since subregion GHG emission factors are higher (red to green bars)

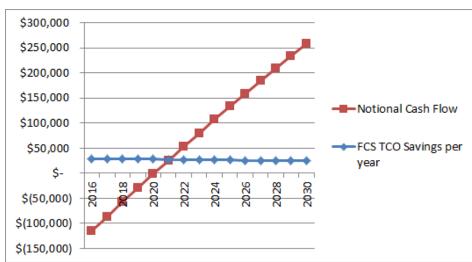
Overall externality benefits similar – but lower in NYC and higher in Houston, driven by local SO2 differences from NERC-level SO2 (red to green bars)

Estimated Clean Power Plan impacts for six representative regions

		kg/MWH		kg/MWh		% Reduction 2030 from 2012				
	EGRID		Kg/ H		2030 Pr	2030 Projection with Clean		70 110000	20301	0111 2012
City	subregion	EGRID for	2012, relea	ased 10/15		Power Plan				
		CO2 AEF eGRID	SO2 AEF eGRID	NOx AEF eGRID	CO2 AEF	SO2 AEF	NOx AEF	CO2	SO2	NOx
		00.112	00.122	00.112	0027121	0027121				1107
Minneap.	MROW	646	1.33	0.73	489	0.25	0.45	24%	81%	38%
NYC	NYCW	316	0.03	0.15	322	0.00	0.05	-2%	97%	64%
Chicago	RFCW	626	1.54	0.55	510	0.40	0.34	19%	74%	37%
Houston	ERCT	518	0.87	0.28	440	0.09	0.11	15%	90%	61%
Phoenix	AZNM	523	0.20	0.59	459	0.07	0.30	12%	64%	50%
S. Diego	CAMX	295	0.09	0.15	259	0.03	0.08	12%	62%	46%
Average								13%	78%	49%

- Average reductions (in average emission factors)
- ~13% reduction in CO2
- ~80% average reduction in SO₂ tons/kWh 2012-2025
- ~50% average reduction in NOx tons/kWh 2012-2025

Notional Cash Flow example – Static marginal emission factors, escalating social cost of CO2

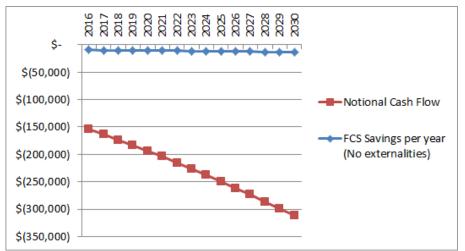


- 50kW LT PEM CHP in small hotel in Chicago 2016-2030, with
 - (1) No reduction in MEFs assumed
 - (2) Escalating social cost of carbon at 3% discount rate
- Not a real cash flow, but including private costs and public benefits
- Installed cost of \$2900/kWe assumed; NPV(societal)=0 at \$5700/kWe installed cost

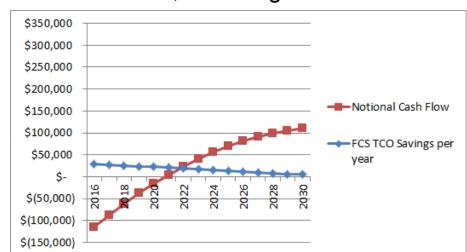
FCS vs Grid, No Externalities

\$-\$(50,000) \$(100,000) \$(150,000) \$(200,000) \$(250,000) \$(300,000) \$(350,000) \$(400,000)

FCS vs Grid, Including Externalities


Private costs: Not favorable to owner For society, cash positive investment

Notional Cash Flow example – Reduction in marginal emission factors, escalating social cost of CO2



- 50kW LT PEM CHP in small hotel in Chicago 2016-2030, with
 - (1) Reduction in MEFs tracking estimated reduction in AEF assumed
 - (2) Escalating social cost of carbon at 3% discount rate
- Not a real cash flow, but including private costs and public benefits
- Installed cost of \$2900/kWe assumed; NPV(societal)=0 at \$3850/kWe installed cost

FCS vs Grid, No Externalities

FCS vs Grid, Including Externalities

Private costs: Not favorable to owner

For society, cash positive investment

These last two figs. on lower right are "bounding cases" for this building case – no change in MEF to full changes from AEF in CPP

Responses to 2015 AMR Reviewer Comments

- Highlight key results Key results highlighted in particular changes to LCIA modeling and SOFC direct manufacturing cost modeling and rationale for changes from last year
- 2. More on LCIA and externality analysis Some reviewers suggesting focusing more on this since other groups are also working on direct manufacturing cost analysis. We provide more detailed description in the main presentation and backup slides on the externality analysis assumptions and projections to 2030.
- 3. Highlight key cost reduction opportunities— This work continues to highlight the importance of balance of plant cost reduction for overall system cost reduction (e.g., power conditioning, potential cost reduction from design and integration) but assumes high throughput stack manufacturing processes achieving higher process yields through continued "learning-by-doing."

Collaborations

Partners

University of California, Berkeley

Laboratory for Manufacturing and Sustainability, Dept. of Mechanical Engineering:

Manufacturing process analysis, DFMA analysis

University of California, Berkeley

Transportation Sustainability Research Center and DOE Pacific Region Clean Energy Application Center:

- System and BOP design, functional specs, BOM definition, parametric relationships
- CHP applications and functional requirements

Strategic Analysis

SOFC system design and functional specifications

Other Collaborators

 No other funded subcontracts, but many industry contacts and expert reviewers, shown on next slide.

Project Summary

Relevance: Provide more comprehensive cost analysis for stationary and materials handling fuel cell systems in emerging markets including ancillary financial benefits.

Approach: Design for manufacturing and assembly (DFMA) analysis cost model and integrated lifecycle cost analysis (LCA) impacts including life cycle costs, carbon credits, and health and environmental benefits

Technical Accomplishments and Progress: Direct cost model for SOFC CHP systems extensively revised; Life cycle impact assessment modeling and externality valuation for FC CHP systems to 2030 estimating impacts of Clean Power Plan.

Collaboration: Partnerships with UC-Berkeley manufacturing analysis and transportation sustainability research groups.

Proposed Next-Year Research: NA

Max Wei

510-486-5220 mwei@lbl.gov

Acknowledgments

Funding and support of this work by the U.S. Department of Energy, Fuel Cells Technologies Office is gratefully acknowledged.

Many thanks also to:

Brian Borglum, Fuel Cell Energy; SolidPower, Mezzolombardo, Italy; Minh Nguyen, University of California, San Diego; Professor Massimo Santarelli, Polytechnic University of Turin, Italy; Professor Jack Brouwer, University of California, Irvine; Patricia Irving, InnovaTek; Jim W. Dennis, HED international, Inc.; Dixita Bhat, Bionics Scientific Technologies Pvt. Ltd.; Mathias Rachau, FuelCon AG; Alexey Peshkovsky, Industrial Sonomechanics, LLC; Martin De Moya, Haiku Tech, Inc.; Edward Stone, Manncorp; Charles H. Birks, Keith Company; Fabio Pagnotta, Aurel Automation S.p.A; Donald Wang, Ph.D., Inframat Advanced Materials; Nickle Shang, Qingdao Terio Corporation; Dick Wildman, Dowd and Guild Inc.; Chris Betz, CHEMPOINT Inc.; Matthew Dickerson, American Chemical Inc.; Christian Ames, Univar USA

Thank you mwei@lbl.gov

Technical Back-Up Slides

Functional specs – common properties

		Fuel Type:	Pipeline Natural Gas
Common properties:	Near-Term	<u>Future</u>	<u>Unit</u>
System life	15	20	years
Stack life	24000	40000	hours
Reformer life (if app.)	5	10	years
Compressor/blower life	7.5	10	years
WTM sub-system life	7.5	10	years
Battery/startup system			
life	7.5	10	years
Turndown % (>50 kW)	0	25	percent
Turndown % (<50 kW)	25	50	percent
Expected Availability	96	98	percent
Stack cooling strategy	Air+off gas	Air+off gas	cooling

Turndown an area for further discussion but taking 25% for < 50kW systems currently

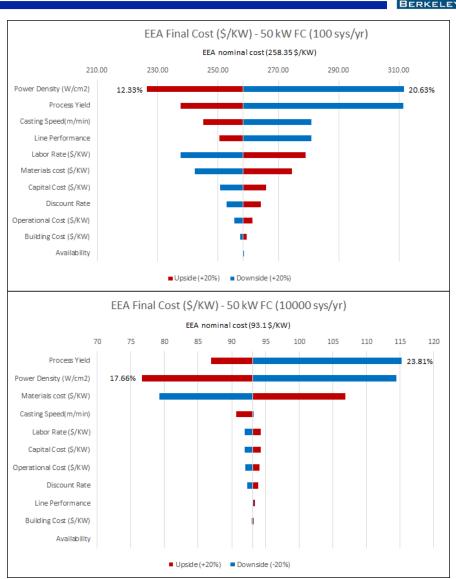
Global DFMA Costing assumptions

Parameter	Symbol	Value	Units	Comments	
Operating hours	t _{hs}	varies	Hours	8 hours base shift; (2-3 shifts per day)	
Annual Operating Days	t _{dy}	240	Days	52wks*5days/wk-10 vacation days-10 holidays	
Avg. Inflation Rate	j	0.023		US avg, for past 10 years (Phillips, 2008)	
Avg. Mortgage Rate	j _m	0.051		(Trading Economics , 2015)	
Discount Rate	Ĵа	0.1			
Energy Inflation Rate	Ĵe	0.056		US avg of last 3 years (Phillips, 2008)	
Income Tax	iį	0		No net income	
Property Tax	ίp	0.01035		US avg from 2007 (Tax-rates.org, 2015)	
Assessed Value	i _{av}	0.4			
Salvage Tax	ig	0.5			
EOL Salvage Value	k_{eol}	0.02		Assume 2% of end-of-life value	
Tool Lifetime	T_t	15	Years	Typical value in practice	
Energy Tax Credits	ITC	0	Dollars		
Energy Cost	C _E	0.1	\$/kWhe	e.g., the cost of electricity in the industrial sector was \$0.109/kWhe in New England, and \$0.102/kWhe in the Pacific contiguous states in October 2014 (https://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a, accessed 29 December 2015))	
Floor space Cost	c _{fs}	1291	\$/m²	US average for factory (Selinger, 2011)	
Building Depreciation	Ĵbr	0.031		BEA rates (U.S. Department of commerce, 2015)	
Building Recovery	T _{br}	31	Years	BEA rates (U.S. Department of commerce, 2015)	
Building Footprint	abr	Varies	m²		
Line Speed	v_i	Varies	m/min		
Hourly Labor Cost	Clabor	29.81	\$/hr	Hourly wage per worker	

MInor updates from 2015:

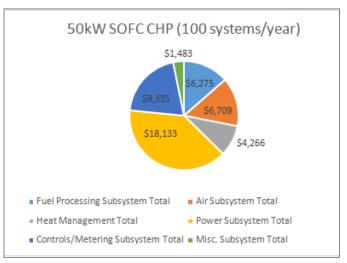
Ann. Op. days from 250 to 240

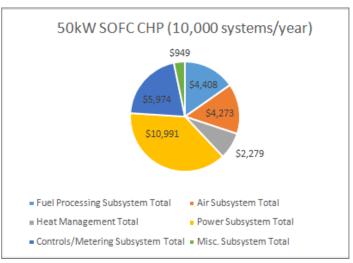
Avg. Inflation rate from 2.5% to 2.3%

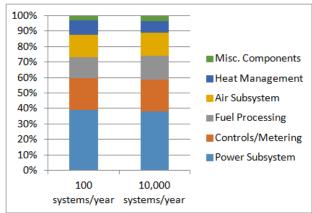

Hourly wage from \$28.08/hr. to \$29.81/hr

Sensitivity of Stack EEA costing for SOFC 50kW CHP

- At low volume:
 - —Yield
 - —Power Density
 - —Coating speed


- At high volume:
 - —Yield
 - —Power Density
 - Materials cost




BOP Components Cost Breakdown

Balance of plant: about 40% power subsystem, 20% controls/metering, 15% fuel processing

Displaced Grid Electricity and Life-Cycle Impact Assessment Modeling

Туре	Item	Units	Assumed source of emissions	Spatial Regime	Temporal Regime	Reference
Electricity	MEF	Tons/MWh	Stack-height level	eGRID Subregions	Annual	eGRID 2015
Electricity	MBA	\$/Ton	Stack-height level	State level	Annual	AP2, Muller (2014)
Fuel	MEF	Tons/MWh	Ground level	Site level	Annual	AP2, Muller (2014)
Fuel	MBA	\$/Ton	Ground level	County level	Annual	AP2, Muller (2014)

LCIA modeling for health/environmental valuation includes both displaced electricity and displaced onsite fuel