

Advanced Catalysts and MEAs for Reversible Alkaline Membrane Fuel Cells

Hui Xu (PI) Giner Inc. Newton, MA

> Project # FC 129

DOE 2016 AMR Meeting

June 9, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Project Start Date: June 1, 2015
- Project End Date: May 31, 2017

Budget

- Total \$1,200,496
 - DOE share \$959,334
 - Contractors share \$241,162
 - Spent: \$362, 567 (by 3/31/2015)

Collaborators

- SUNY-Buffalo: Prof. Gang Wu
- NREL: Drs. Bryan Pivovar and Shaun Alia

Barriers Addressed

- Activity (catalyst; MEA)
- Durability (catalyst; MEA)
- Cost (catalyst; MEA)

Technical Targets

- Design and develop ORR/OER bi-functional oxide catalysts
- Integrate ORR/OER bifunctional oxide catalysts and alkaline membranes to develop highly efficient reversible alkaline membrane fuel cells (AMFCs) for stationary energy storage

Reversible Fuel Cells

- Water electrolyzer is an ideal device to store energy from wind mills and solar farms, where surplus (off peak) energy is nearly free
- Stored H₂ can be used for fuel cells to generate electricity in peak time

Research Objective

Anion Exchange Membrane (AEM) Fuel Cells

Opportunities

- Non PGM based catalysts drives down capital cost;
- New concepts for oxide catalyst design;
- Surplus electricity from renewable energy;
- Gradual maturity of AEM technology

Challenges

- Non-PGM bifunctional oxide catalyst **activity** and **stability**
- Fabrication of non-PGM MEAs for AEM fuel cells NOT extensively studied
- Unitized regenerative fuel cell design and construction

Integrate AEM <u>water electrolyzer</u> and <u>fuel cell</u> together to develop reversible AEM fuel cell for energy storage and conversion

Technical Approaches

• Catalyst Long-term Stability;

• MEA Fabrication Technology

Design of Bifunctional Catalysts: Carbon Supported Metal Oxides

Opportunity: Metal Oxide showing good OER catalytic activity and excellent

electrochemical stability

Approach: Hydrothermal methods are used to prepare oxide nanoparticles deposited onto nitrogen-doped carbon matrices (*e.g.*, graphene, nanotubes)

Identifying Stable Nanocarbon for the OER

Carbon tubes holding great promise to be stable during the OER

Accomplishment 1: Synthesis Co₃O₄-oCNT Catalysts

Post-treatment, ammonia reduction

250 °C for 6h in 5% NH_3/Ar

condense

magnetic stirrer bars

40

-0-

Co(OAc)₂

Ethanol, DI

water and

NH₃.H₂O

Physical Characterization of Co₃O₄-oCNT Catalysts

XRD pattern, FTIR and TEM images before and after NH₃- treatment

before

after

- XRD: before-corresponded well with FCC Co_3O_4 ; after: Co_3O_4 feature decreased, but not complete CoO
- TEM: before-smaller particles agglomerate; after- larger particles and round edges to stay in low energy
- FTIR: Both the single and double bonded oxygen functional groups were reduced after NH3 post-treatment

RDE Activity of Co₃O₄-oCNT Catalysts

- For ORR: both onset and half-wave potential were ~0.1 V lower than that of Pt/C;
- For OER: the onset was ~ 0.07 V higher than Ir black

We have achieved the 1st Year 's go/no-go milestone at Q4:

Demonstrate ORR activity > 1 mA/mg oxide at IR-free 0.9 V; and OER activity > 15 mA/mg oxide at IR free 1.6 V

<u>RDE Durability of Co₃O₄-oCNT Catalysts</u>

- As-oxidized CNTs lost stability after only 500 cycles, NH₃ reduction treatment stabilized the CNTs
- Co₃O₄-oCNT exhibited good durability after 2000 cycles subject to voltage cycling

Further Optimization of Co₃O₄-oCNT Catalysts

- Oxidation agents (functional groups), length, concentration, T
- Precursor ratio \geq
- CNT type and size (length and O.D.)
- Precursor type
- Post-treatment: NH₃ concentration, T, heating time, heating rate \geq

initial

1.5

Potential (V vs RHE)

1.8

15:1:

Covered the whole surface of oCNT, large cubic grains around 5-10 nm

5:3:

Much smaller particles (1-2 nm) gathered specific regions

Accomplishment 2: Graphene Tube Based ORR/OER Catalysts (SUNY)

Unique capability to control the tube size by varying the transition metals during the graphitization process

Multi-Walled Graphene Tube Synthesis

Low-cost and scalable synthesis method to produce graphene tubes

Activity and Stability of Graphene Tubes

AST: Voltage Cycling from 0.0 V to 1.8V (vs. RHE)

- Fe-derived graphene tubes most active for the ORR and OER, but suffer from poor stability during continuously ORR-OER operation models;
- Ni-derived tubes are stable, but low activity.

Graphene Tube ORR/OER Bifunctional Catalysts

Binary and Ternary metal-derived graphene tubes

Binary and ternary metal combinations were used to prepare graphene tubes in order to achieve sufficient activity and stability simultaneously .

We have achieved the 1st Year 's go/no-go milestone at Q4.

"In RDE, demonstrate ORR activity > 1 mA/mg oxide at IR-free 0.9 V; and OER activity > 15 mA/mg oxide at IR free 1.6 V"

Most Stable Graphene Tube ORR/OER Bifunctional Catalysts

Graphene Tube ORR/OER Bifunctional Catalysts

The Most Stable FeCoNi-derived Graphene Tubes

Highly graphitized tube morphology/structure is retained after potential cycling tests

Accomplishment 3: HOR/HER, Pt-Ni Nanowires(NREL)

- Increased ECSA at low displacement: 60 m² g_{Pt}^{-1} in base
- Activity by exchange current densities
- Site-specific activity constant, higher than Pt/HSC
- Mass activity 2.6 times higher than Pt/HSC

HOR/HER Pt-Ni Hydrogen Annealing

0

PLANH

PENI DECULT PUHSC

- Microscopy shows loss of surface features, Pt aggregation
- May increase nanowire _ dissolution
- Activity ٠
 - Site-specific activity increases with temperature
 - Mass activity peaks (250–300°C)

l_{0,s} [mA cm_b,

6

3

0

Accomplishment 4: Providing New AEMs (NREL)

- First polymer was synthesized from perfluorosulfonyl fluoride polymer (800 equivalent weight) and N,N,N'trimethylpropyldiamine (PF800)
- For stability methyl group on linker amide was changed to propyl (DPA) and a third polymer was synthesizing using all propyl groups on amines (TPA)
- PFAEM demonstrates superior performance to Tokuyama in most current regions

Cathode: 0.32 mg Pt/cm² Anode: 0.32 mg Pt/cm² or 0.30-0.35 mg PtRu/cm²

AEM work is leveraged from other DOE project FC147;

> 15 g of membranes and 5 g of ionomer solution will be provided to Giner

Conclusions

- Tube-like structures prove to be stable subject to extensive voltage cycling (0.0 V to 1.8 V) in RDE under alkaline media; directing a viable application in developing bi-fuctional ORR/OER catalyst;
- Both Co₃O₄/o-CNT and FeCoNi-derived graphene tubes catalysts have achieved superior activity for the ORR/OER, exceeding Go/No-Go milestone at Q4; these catalysts are very stable subject to voltage cycling (0.0 V to 1.8 V);
- PtNi Nanowire catalysts demonstrated higher HOR/HER activity than Pt/C
- NREL AEMs are comparable or superior to Tokuyama membranes for fuel cell performance in most current regions.

Future Plans

- Explore MEA fabrication for bifunctional catalysts and optimize test conditions for both fuel cell and electrolyzer mode
 - Ongoing MEA test for dual modes
- Modify fuel cell configuration and test station to operate fuel cell (discharge)/electrolyzer (charge) intermittently
 - Unitized reversible fuel cell design

Technical Milestones

Time	Milestone Description	Completion
Q1	Synthesize BaTiO _{3-x} perovskites with 3 different oxygen vacancy concentrations	100%
Q2	Prepare 3 other oxygen-deficient AA'BB'O _{3-x} multiple perovskite catalysts (e.g., BaSrCoFeO _{3-x} or BaSrMnCrO _{3-x}) with optimized defect structures	100%
Q3	Reduce perovskite particle size to nanoscale (<10 nm) with much increased surface areas (>20 m ² /g)	90%
Q3	Prepare 3 $A_x B_{1-x} C_2 O_4$ spinel catalysts (A, B and C represent Co, Mn, Fe or other Metals) with particle size <10nm	100%
Q4 (go/no-go point)	In RDE, demonstrate ORR activity > 1 mA/mg oxide at /R-free 0.9 V; and OER activity > 15 mA/mg oxide at IR free 1.6 V.	100%
Q4	Provide 20g of PF AEM material in membrane/ ionomer form Membrane conductivity >0.05 S/cm at 60°C and 100% RH; H ₂ permeability: 10 ⁻¹² mol/(kPa.s.cm)	50%
Q5	3 AEI ionomer categories and 5 ionomer loadings will be evaluated to identify the best electrode composition	30 %
Q6	Achieve RFC performance 0.55V for fuel cell and 1.6V for electrolyzer, both at 600mA/cm ²	0 %
Q7	Achieve fuel cell and electrolyzer life of 500 hours with less than 10% performance decay	0%
Q8	Generate a full report of catalyst and reversible fuel cell economics	0%

<u>Collaborations</u>

Institutions	Roles
<u>Giner Inc. (Giner)</u> Hui Xu (PI), Shuai Zhao, Brian Rasimick, Meagan Rich	Prime, oversees the project; metal oxide supported on CNTs; bi- functional MEA fabrication and optimization; reversible fuel cell design; cost analysis
<u>SUNY -Buffalo(SUNY)</u> Gang Wu and Shiva Gupta	Graphene tube based OER/ORR bi- functional catalyst development; MEA fabrication
National Renewable Energy Laboratory (NREL) Bryan Pivovar, and Shaun Alia	AEM development; HOR/HER catalyst development; standard MEA fabrication;

Acknowledgments

- Financial support from DOE EERE Fuel Cell Technologies Office, Incubator Program Award # DE-EE0006960
- DOE Program Managers
 - Dr. David Peterson
 - Donna Ho
- Giner Personnel
 - Shuai Zhao, Brian Rasimick, Meagan Rich, Corky Mittelsteadt
- SUNY: Prof. Gang Wu
- NREL: Drs. Bryan Pivovar and Shaun Alia

Appendix

<u>XPS Characterization of Co₃O₄-oCNT Catalysts</u></u>

- Oxide or hydroxide in Co intermediate forms single bonds with neighboring C
- Oxidized C were significantly reduced to be stabilized after NH₃- treatment
- Increase of satellite peaks for CoO indicates increase of the +2 state Co in metal oxides after NH₃-treatment

Oxygen-deficient Perovskite Catalysts

BET, Pore Size and Electrochemical Surface Area

of Graphene Tube Catalysts

Catalysts name	BET Surface Area (m²/g)	Total pore volume (cm ³ /g)	Average pore size (nm)	EASA (m²/g)
N-nGT(Fe)	35.34	0.12	13.98	33.32
N-nGT(FeNi)	67.8	0.22	13.33	49.9
N-nGT(CoNi)	177.15	0.51	11.93	99.96
N-nGT(FeCoNi)	144.84	0.53	14.76	221

Publications

- Wang, X.; Pan, H.; Ke, Y.; Sheng, H.; Swihart, M. T.; Wu, G. "Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction". *Nanoscale*, 7, 20290-20298 (2015).
- Gupta, S.; Kellogg, W.; Xu, H.; Liu, X.; Cho, J.; Wu, G. "Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media". *Chemistry – An Asian Journal*, **11**(1), 10–21 (2016).
- Wu, G.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H.; Wang, H.-L.; Dai, L. "Carbon Nanocomposite Catalysts for Oxygen Reduction and Evolution Reactions: from Nitrogen Doping to Transition-Metal Addition". Nano Energy, 2016, doi:10.1016/j.nanoen.2015.12.032.
- Zhao, S., Rasimick, B, Mustain, W., and Xu, H. "Highly Durable and Active Co₃O₄ Nanocrystals Supported on Carbon Nanotubes as Bifunctional Electrocatalysts in Alkaline Media", submitted to *Nano Energy (2016)*
- Zhao, S. and Xu, H., "Metal Oxides Supported on Carbon Nanotubes as Bifunctional Electrolysts for Reversible Alkaline Membrane Fuel Cells", to be presented in the 229th ECS meeting, abstract# 1434, San Diego, May 31 (2016)