

FC-PAD

Fuel Cell – Performance and Durability FC135: FC-PAD Consortium Overview

Presenter: Rod Borup

Wednesday, June 8th 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

FC-PAD Consortium - Overview

Fuel Cell Technologies Office (FCTO)

- FC-PAD coordinates activities related to fuel cell performance and durability
 - The FC-PAD team consists of five national labs and leverages a multidisciplinary team and capabilities to accelerate improvements in PEMFC performance and durability
 - The core-lab team consortium was awarded beginning in FY2016; builds upon previous national lab (NL) projects
- Provide technical expertise and harmonize activities with industrial developers
- FC-PAD serves as a resource that amplifies FCTO's impact by leveraging the core capabilities of constituent members

FC-PAD NL Consortium – Relevance & Objectives

Overall Objectives:

- Advance performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) at a <u>pre-competitive</u> level
- Develop the knowledge base and optimize structures for more durable and high-performance PEMFC components
- Improve high current density performance at low Pt loadings
 - Loading: 0.125 mg Pt/cm² total
 - Performance @ 0.8 V: 300 mA / cm²
 - Performance @ rated power: 1,000 mW / cm²
- Improve component durability (e.g. membrane stabilization, self-healing, electrode-layer stabilization)
- Provide support to industrial and academic developers
- Each thrust area has a sub-set of objectives which lead to the overall performance and durability objectives

FC-PAD Overview & Relevance

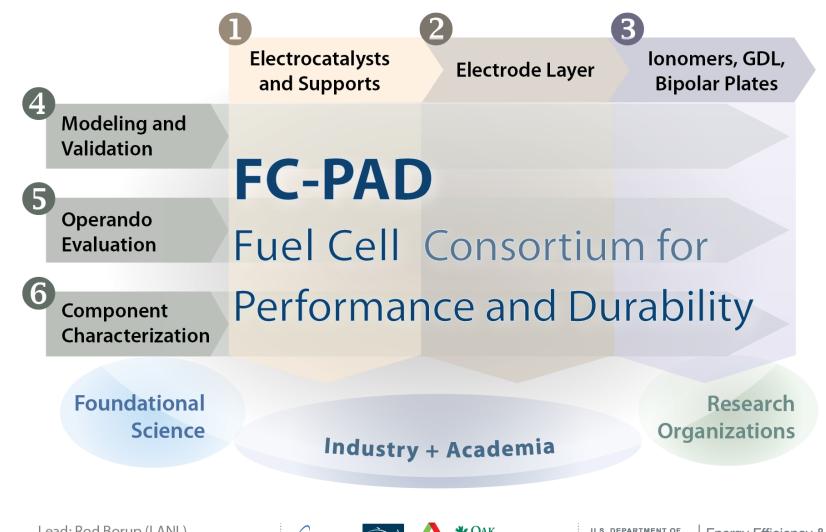
Timeline

Project start date: 10/01/2015 Project end date: 09/30/2020

Budget

FY16 project funding: \$5,000,000As proposed: 5-year consortium with quarterly, yearly milestones & Go/No-GoTotal Expected Funding: \$25M (NLs only)

Partners/Collaborations (To Date Collaborations Only)

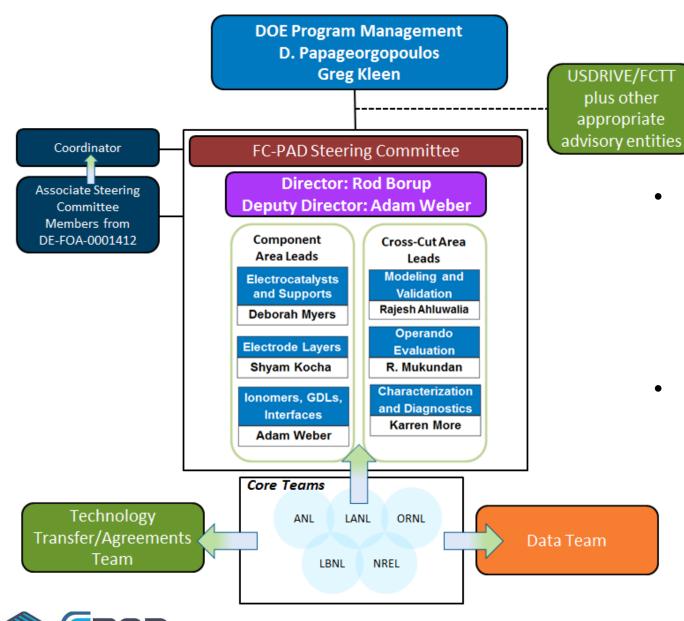

- IRD Fuel Cells, Umicore, NECC, GM, TKK, USC, KIER, 3M, JMFC, W.L. Gore, Ion Power, Tufts, KIER, PSI, UDelaware, 3M, CSM, SGL, NPL, NIST, CEA, ULorraine
- Partners to be added by DOE DE-FOA-0001412

Barriers

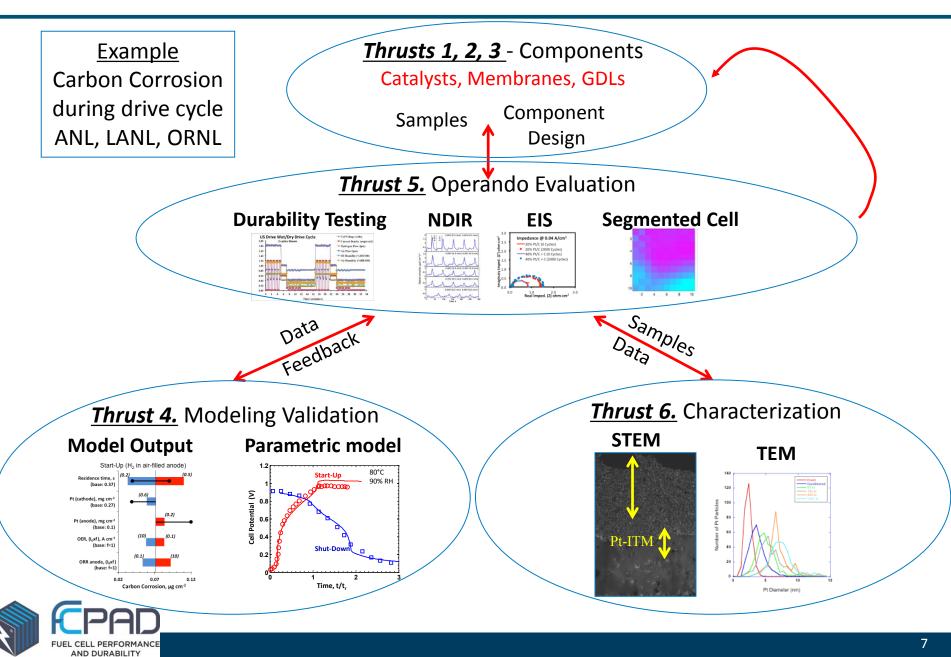
- Cost: \$40/kW system; \$14/kW_{net} MEA
- Performance @ 0.8 V: 300 mA / cm²
- Performance @ rated power: 1,000 mW / cm² (150 kPa abs)
- Durability with cycling: 5,000 (2020)
 8,000 (ultimate) hours, plus 5,000
 SU/SD Cycles
- Mitigation of Transport Losses
- Durability targets have not been met
- The catalyst layer is not fully understood and <u>is key in lowering costs</u> by meeting rated power.
- Rated power@ low Pt loadings reveals unexpected losses

FC-PAD: Structural Approach

Lead: Rod Borup (LANL) Deputy Lead: Adam Z. Weber (LBNL)



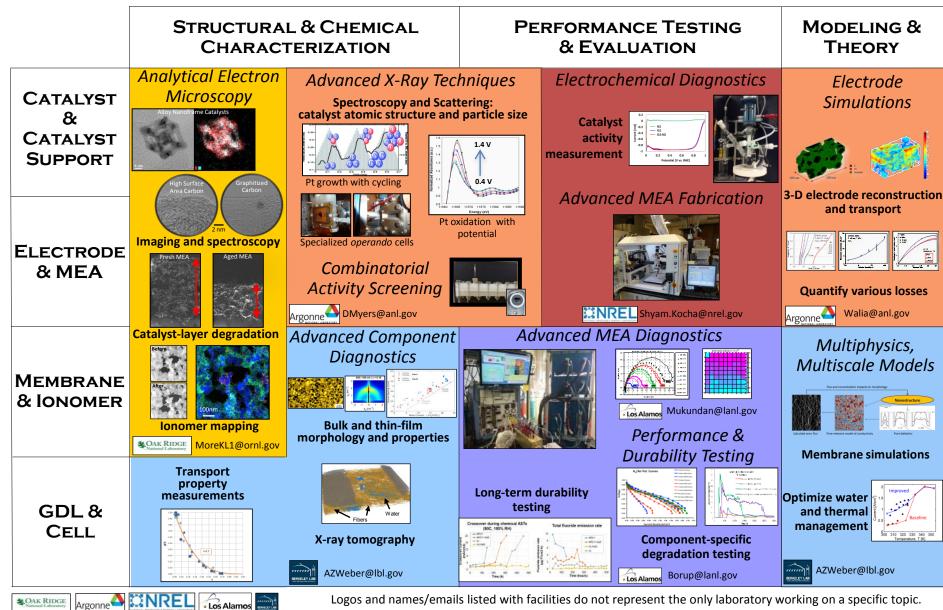
Energy Efficiency & Renewable Energy


FC-PAD Organization

FUEL CELL PERFORMANCE AND DURABILITY

- Couple national lab capabilities with future FOAs for an influx of innovative ideas and research
- Collaborations are also desired outside the FOA process

Example of Thrust Area Coordination



Highlights of FC-PAD NL Capabilities for Collaboration

CAK RIDGE

Los Alamos

Logos and names/emails listed with facilities do not represent the only laboratory working on a specific topic.

FY16 FC-PAD Consortium Milestones

Argonne National Lab

QTR	Due Date	Туре	Progress Measures, Milestones, Deliverables	
		Progress	Ex situ measurement of steady state concentration and dissolution rates of	Comp
Q1	12/31/2015	Measure	dissolved Pt and base metal from SOA Pt alloy catalysts	
		Progress	Develop and test protocol for characterizing performance and durability of	Comp
Q2	3/31/2016	Measure	SOA Pt alloy-based cathode catalyst layers (CCL)	Comp
			Publish model of thermodynamics and kinetics of Pt and base metal	
Q3	6/30/2016	Milestone	dissolution	

lete for TKK Pt3Co

lete

Lawrence Berkeley National Lab

QTR	Due Date	Туре	Progress Measures, Milestones, Deliverables		
Q1	12/31/2015	Progress Measure	Measurement of structural and transport properties of reinforced PFSA membrane including impact of hygrothermal ageing and anhydrides	Complete, including pub.	
Q2	3/31/2016	Progress Measure	Measurement of critical ionomer thin-film properties including simultaneous water uptake and swelling, gas permeability, and surface conductivity	Complete	
Q2 Q3	6/30/2016	Milestone	Agreement (< 10 % deviation) between 1+2-D performance model and segmented cell data for two relative humidities	On Track	

Los Alamos National Lab

QTR	Due Date	Туре	Progress Measures, Milestones, Deliverables	
Q1	12/31/2015	Progress Measure	Quantification of gas-phase transport improvement of electrospun fibers in cathode electrode layer by Electrochemical Impedance Spectroscopy (EIS)	Complete
Q2	3/31/2016	Progress Measure	Compare the spatial distribution of reversible degradation during power cycling and constant power operation	Complete
Q3	6/30/2016	Milestone	Publish in situ measurement of cerium (or other anti-oxidant) concentration profile in the electrode layer and membrane as a function of potential and current density	Complete; pub. submitted under review, additional
C				measurements in progress

FY16 FC-PAD Consortium Milestones

National Renewable Energy Lab

QTR	Due Date	Туре	Progress Measures, Milestones, Deliverables	
Q1	12/31/2015	Progress Measure	Propose relevant diagnostic techniques for the identification of local Pt transport resistance	Complete
Q2	3/31/2016	Progress Measure	Fabricate, integrate, and evaluate electrode layers with modulated properties (e.g. catalyst wt%, carbon type) that can affect local Pt resistance in low-loaded PEMFCs	Complete
Q3	6/30/2016	Milestone	Quantify changes in local Pt transport resistance before and after durability measurements of down-selected electrode materials	In Progress

Oak Ridge National Lab

QTR	Due Date	Туре	Progress Measures, Milestones, Deliverables		
		Progress	Establish critical measurement protocol via cross-sectional TEM/STEM+EDS for several Pt-alloy catalysts to understand alloy catalyst	Completed	
Q1 Q2	12/31/2015 3/31/2016	Measure Progress Measure	degradation (dissolution) during testing (coordinate with ANL activities)Completed; moresnitiate study of ionomer structural changes in low Pt-loaded MEAsto be characterizedubjected to extensive fuel cell operationto be characterized		
Q2 Q3	6/30/2016	Milestone	Establish complete database of Pt-alloy, Ce/ceria, carbon corrosion effects, and ionomer distribution observations as input data for model development; necessary data, e.g., testing protocols, and materials will be coordinated with ANL and LANL	In Progress; awaiting more samples	

FC-PAD Annual Milestone

QTR	Due Date	Туре	Progress Measures, Milestones, Deliverables	
Q4	9/30/2016	Milestone	under tent KTIS $(2576, 50, 7576$ and 10076) at $1 - 9000$ under both applied	In Progress On Track for completion

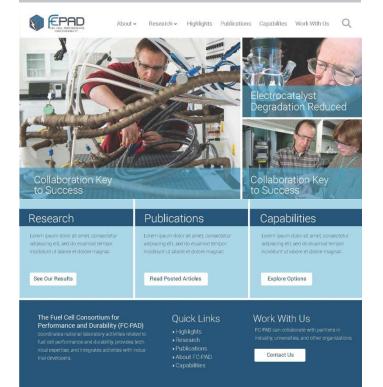
Accomplishments: Coordination, Outreach, Web-site

Data Sharing: Internal Web-Site

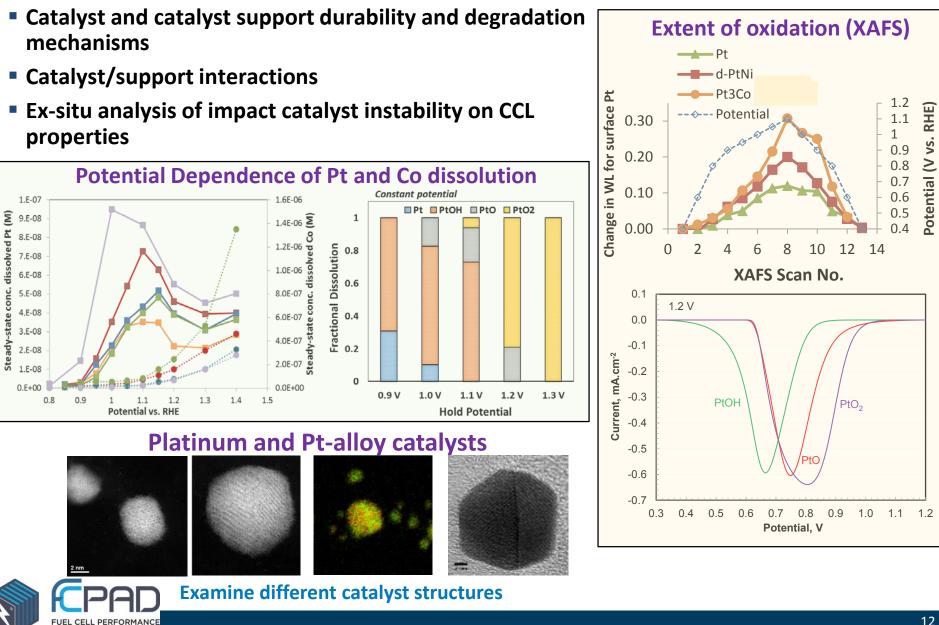
- Operational in ~ December 2015
- Internal with hierarchical authorization

External Web-Site: Operation ~ June 2016

www.fcpad.org

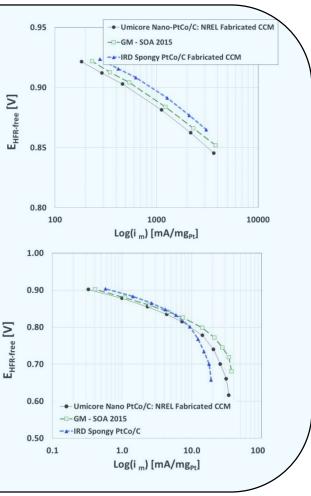

Communication

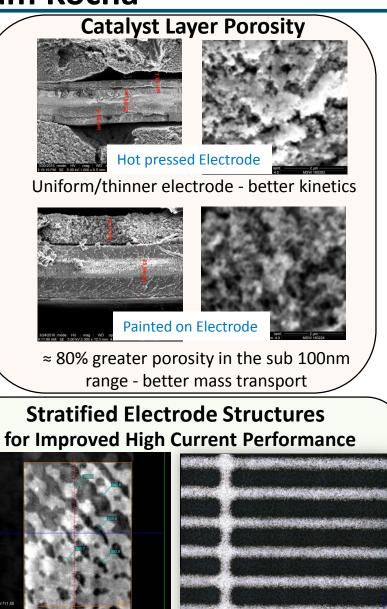
- Outreach: External presentations of FC-PAD > 10 times and public webinar
- FC-PAD Face-to-Face Kickoff meeting held Nov. • 2015 (Los Alamos)
- FC-PAD Face-to-Face mid-year meeting held May 2016 (Berkeley)
- Durability and Transport Working Group meetings held May 2016 (Berkeley)
- Multiple thrust area coordination conference calls held biweekly
- Multiple personel exchange/visits between NLs



- FC-PAD website describes FC-PAD's organization, research focus, and contributors
- Presents recent research publications
- Helps users access supporting laboratory capabilities, partnership information, and other resources

FC136 - Thrust 1: Electrocatalysts and Supports **Coordinator: Debbie Myers**

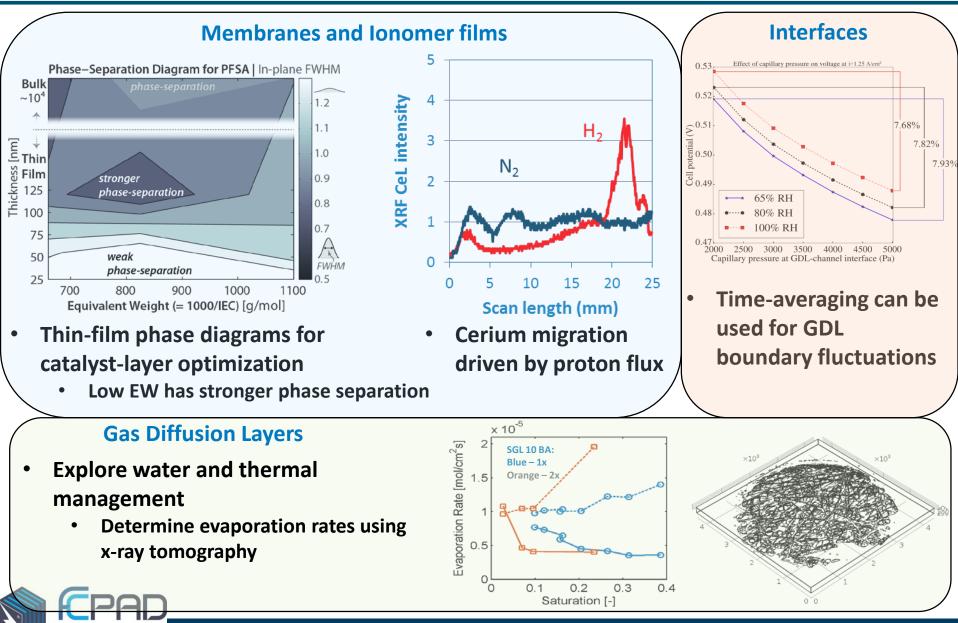

AND DURABILITY

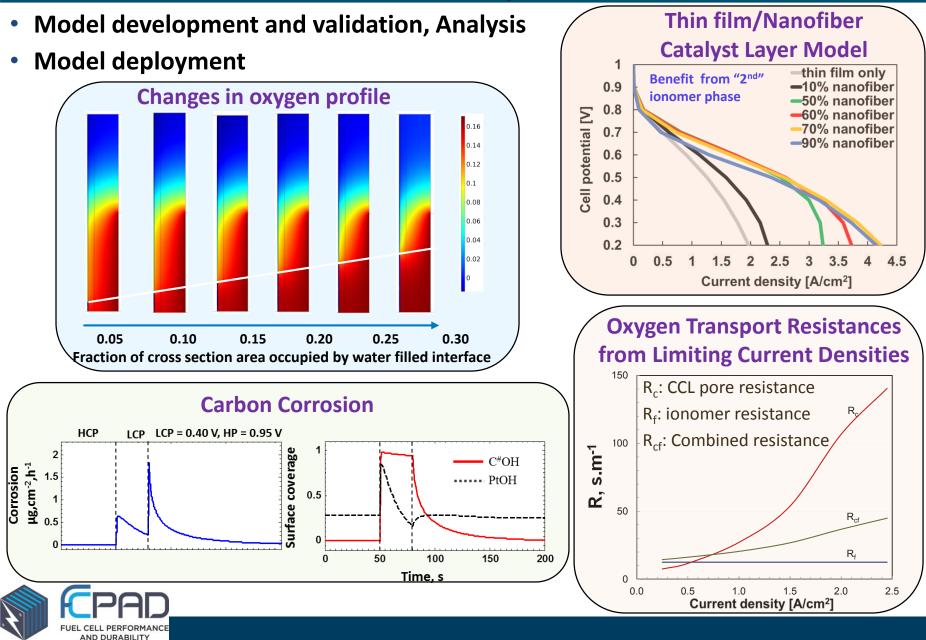

FC137 - Thrust 2: Electrode Layers

Coordinator: Shyam Kocha

- Low Pt-loaded electrode layers
- Transport in low-loaded catalyst layers
- Electrode-layer design and fabrication

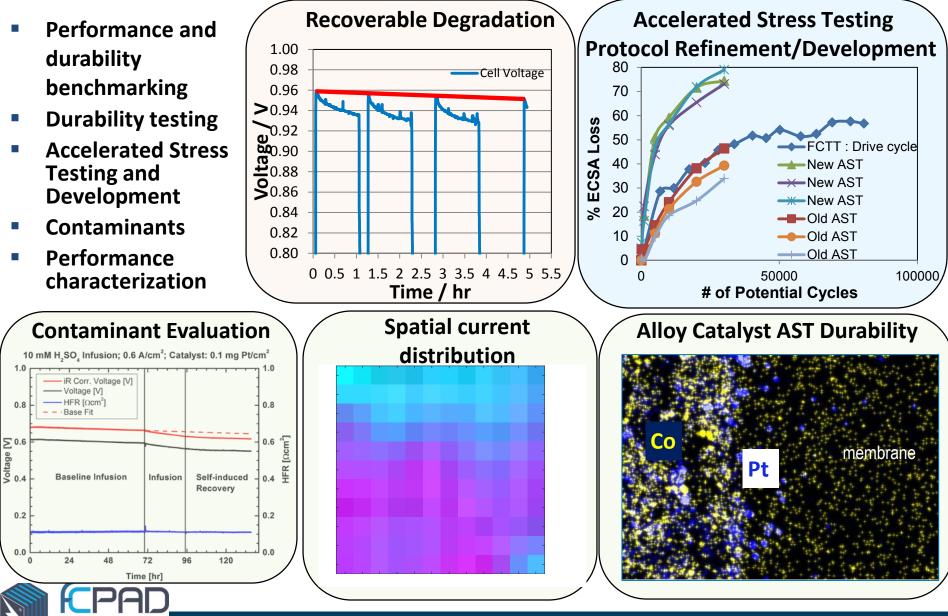
Electrode Layer Diagnostics Higher Tafel kinetics do not (always) correspond to better high current density performance



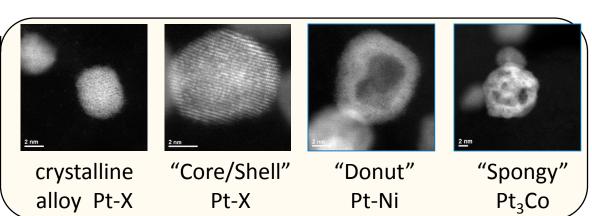


FC138 - Thrust 3: Ionomers, GDLs, Interfaces Coordinator: Adam Weber

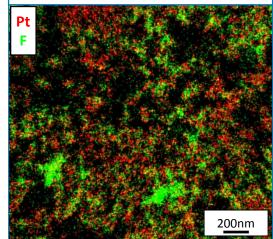
FUEL CELL PERFORMANCE AND DURABILITY



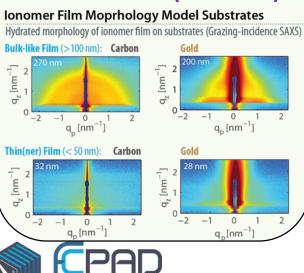
Thrust 4: Modeling and Validation Coordinator: Rajesh Ahluwalia


FC139 - Thrust 5: Operando Evaluation Coordinator: R. Mukundan

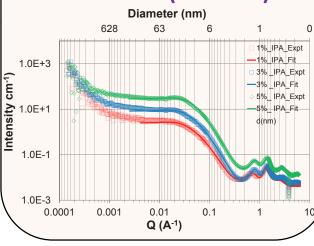
FUEL CELL PERFORMANCE AND DURABILITY


Thrust 6: Diagnostics and Characterization Coordinator: Karren More

- Comprehensive Materials
 Benchmarking sub-Å to μm-level
 Understanding
- Coordination across all six thrusts for durability/performance characterization
 - Advanced Electron Microscopy
 - Neutron and X-ray Studies
 - Component Diagnostics


CL Ionomer Mapping

Ionomer aggregate size range 50-400nm


Non-homogeneous ionomer distribution: dependent on density of Pt/C agglomerates and association with porosity

Ionomer Thin Film Measurements (LBNL-ALS)

FUEL CELL PERFORMANCE AND DURABILITY

X-ray Scattering of Ionomer Solutions (ANL-APS)

FC-PAD Consortium Go/No-Go Decisions

QTR	Due Date	Туре	Go/No-Go Decision	Decision Criteria
Q4	9/30/2016	Go/No-Go Decision (Consortium)	Continue with research related to reversible degradation	Definition of a recovery procedure that results in > 95% recovery of known reversible degradation utilizing less than 30 sec of drive cycle time
Q8	9/30/2017	Go/No-Go Decision (Consortium)	Cell-level modeling continuation versus individual component modeling	Cell-level performance model validated to within 10% accuracy of polarization behavior under 3 humidities and 4 temperatures
Q12	9/30/2018	Go/No-Go Decision (Consortium)	Continuation of MEA optimization: has MEA integration met targets. If yes, shift focus to durability of MEA microstructure.	MEA with < 0.125mg _{Pt} /cm ² demonstrates 1W/cm ² rated power and current > 300mA/cm ² at 0.8V
Q16	9/30/2019	Go/No-Go Decision (Consortium)	Continuation of research on specific individual component degradation	< 5 mV degradation at rated power (~1500 mA/cm ²) for any individual component over 5000 hr drive cycle with SD/SU or equivalent ATS procedures
Q20	9/30/2020	Go/No-Go Decision (Consortium)	Continue durability work on MEA components	Demonstrate single cell performance of 5000 hours (or equivalent ATS procedures) with $< 30 \text{ mV}$ loss at 1.5 A/cm ² at total Pt loading of $< 0.125 \text{mg}_{\text{Pt}}/\text{cm}^2$

Collaborations

Role
ANL, LBNL, ORNL, LANL, NREL Each Lab has one or more thrust roles and coordinators
Supply SOA catalysts
Supply SOA catalysts and/or MEAs
Supply SOA catalysts
Supply SOA catalysts
Catalysts and CCMs (as part of FC106)
Supply SOA catalysts and/or MEAs
Supply CCMs
Supply SOA catalysts, SOA Membranes,
Supply CCMs
GDL imaging
Micro-electrode cell studies

Collaborations

Institutions	Role
FC-PAD Consortium	ANL, LBNL, ORNL, LANL, NREL
PSI – Paul Scherer Institute	GDL imaging
University of Delaware	Membrane durability
3M	lonomers
Colorado School of Mines	Membrane diagnostics
SGL Carbon	GDLs
NPL - National Physical Laboratory	Reference electrodes for spatial measurements
NIST – National Inst. of Standards and Tech	Neutron imaging
CEA - Commissariat à l'énergie atomique et aux énergies alternatives	Durability testing protocols, microscopy
University of Lorraine, Nancy	SD/SU segmented cell measurements
FUTURE – DE-FOA-0001412	

Proposed Future Work

Plans FY16

- Incorporate collaborators from DE-FOA-0001412 into FC-PAD
 - Define mechanisms for collaboration
 - Lab and capability matching exercise
 - Identify roles for the FC-PAD core National Labs for supporting roles
 - Develop milestones for the FC-PAD National Labs related to newly awarded projects
- Populate external FC-PAD website with relevant information
- **Remaining Milestone** Reversible Degradation: Definition of a recovery procedure that results in > 95% recovery of known reversible degradation utilizing less than 30 sec of drive cycle time

Plans FY17 (more details in Thrust area presentations)

- Integrate new collaborators (industrial/academic/NLs) with core National Labs
- Continue outreach to develop new collaborators
- Thrust 1: Concentration on Pt-X alloys; developing understanding related to supports and durability
- Thrust 2: Optimize catalyst layers with SOA catalysts; implement alternative designs for CCLs
- Thrust 3: Investigate side-chain chemistry effects; relationship between cerium migration and durability
- Thrust 4: Thin-film structure/property modeling; modeling of CL/GDL/Channel interfaces
- Thrust 5: Segmented cell evaluation of durability; adoption/development of differential cell protocols
- Thrust 6: Characterization of CL structure; ionomer mapping and ionomer interactions with catalyst; provide characterization to collaborators

Summary

- <u>Relevance</u>: Advance performance and durability of polymer electrolyte membrane fuel cells (PEMFCs)
- <u>Approach</u>: FC-PAD was formed to coordinate activities related to fuel cell performance and durability
 - FC-PAD builds upon previous NL projects; consists of five national labs and leverages a multi-disciplinary team
 - Collaborate and support industrial and academic developers

• Accomplishments and Progress:

- FC-PAD NL consortium operating with integrated thrusts
 - Website operational (internal and external)
 - Outreach activities, including > 10 external presentation and site visits
- Expansion of prior projects examining performance and durability of Pt-alloy catalysts
- Multiple variations of electrode designs to optimize high current density performance
- Modeling and experiments related to thin-film ionomer for catalyst layer optimization
- New durability ASTs accepted by DOE/US DRIVE Fuel Cell Tech Team

FC-PAD: Additional Information

FC-PAD Website Detailed FC-PAD slides by thrust area WWW.FCPAD.ORG

Additional Information Available On-line:

From **DE-FOA-0001412:** http://energy.gov/eere/fuelcells/fc-pad

Fuel Cell Technologies Office Multi-Year RD&D Plan:

http://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22

- Fuel Cell Technologies Office (FCTO)
- Organizations we have collaborated with to date
- User facilities, including SLAC, ALS, APS, NIST BT-2, Center for Nanoscale Materials

