Highly Active, Durable, and Ultra-low PGM NSTF Thin Film ORR Catalysts and Supports

FC143

Andrew J. Steinbach

3M Company, St. Paul, MN

U.S. DOE 2016 Annual Merit Review and Peer Evaluation Meeting Washington, DC June 7, 2016

Project Overview

Total DOE Project Value:

Cost Share Percentage:

Total Funding Spent:

	Timeline		
Project Start:	1/1/2016		
Project End:	3/30/2019		

Budget

*Includes DOE, contractor cost share and FFRDC funds as of 2/28/16

\$4.360MM*

\$0.073MM*

23.72%

Barriers

- A. Durability
- B. Cost
- C. Performance

DOE 2020 Technical Targets

PGM total content (both elec.):	0.125 g/kW
PGM total loading:	0.125 mg/cm ²
Loss in initial catalytic activity:	< 40%
Loss in performance at 0.8A/cm ² :	
Loss in performance at 1.5A/cm ² :	< 30mV
Mass activity (0.90V _{IR-FREE}):	0.44A/mg

Partners

Johns Hopkins University (J. Erlebacher) Purdue University (J. Greeley) Oak Ridge National Laboratory (D. Cullen) Argonne National Laboratory (D. Myers, J. Kropf)

Project Objective and Relevance

Overall Project Objective

Develop *thin film* ORR electrocatalysts on 3M Nanostructured Thin Film (NSTF) supports which exceed all DOE 2020 electrocatalyst cost, performance, and durability targets.

Project Relevance

ORR catalyst activity, cost, and durability are key commercialization barriers for PEMFCs.

3M NSTF ORR catalysts are one leading approach which approach many DOE 2020 targets *in state-of-the-art MEAs*.

Project electrocatalysts will be:

- compatible with scalable, low-cost fabrication processes.
- integrated into advanced electrodes and MEAs which address traditional NSTF challenges: operational robustness, contaminant sensitivity, and break-in conditioning.

Overall Approach

Establish relationships between electrocatalyst functional response (activity, durability), physical properties (bulk and surface structure and composition), and fabrication processes (deposition, annealing, dealloying) via systematic investigation.

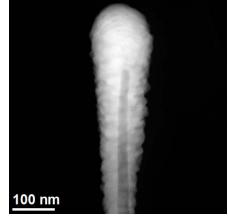
Utilize high throughput material fabrication and characterization, electrocatalyst modeling, and advanced physical characterization to guide and accelerate development.

Status versus DOE and Project Targets

	2020 Target and	Project	Status	
	Units	Target	(Apr. '16)	
Platinum group metal (PGM) total content			0.16 ¹	
(both electrodes)	0.125 g/kW	0.1 (0.70V)	0.18 ²	
PGM total loading (both electrodes)	$0.125 mg/cm^2$	0.10	0.105 ¹	
	0.125 mg/cm ²		0.127 ²	
Loss in catalytic (mass) activity	40 %	20	40 ³	
Loss in performance at 0.8 A/cm ²	30 mV	20	28 ³	
Loss in performance at 1.5 A/cm ²	30 mV	20	NA	
Mass activity @ 900 mV _{iR-free}	0.44 A/mg		0.24 ³ (NPTF "M")	
	Ŭ	0.80	0.47 ⁴ (NPTF)	
	(MEA)		0.31 ⁵ (UTF)	
¹ 0.015mg _{Pt/} cm ² NSTF anode, 0.075 dealloyed PtNi/NSTF cathode, 0.015 mg _{Pt} /cm ² cathode interlayer.				
² 0.02mg _{Pt/} cm ² NSTF anode, 0.091mg _{PGM} /cm ² NPTF "M" cathode, 0.016 mg _{Pt} /cm ² cathode interlayer.				
³ NPTF "M" cathode, 0.091mg _{PGM} /cm ² after 30k Electrocatalyst AST cycles. ⁴ Annealed NPTF P4A Pt ₃ Ni ₇ /NSTF, 0.12mg _{Pt} /cm ² ; adjusted from 0.900V _{MEAS} (70mV/dec)				
5 UTF "#4", 0.025mg _{PGM} /cm ² .				

JPG

Milestones (BP1), Project Go/No-Gos, and Deliverable


Task Number, Title	Type (M/G), Number	Milestone Description/ Go/No-Go Decision Criteria	Status	Date (Q)
4.1 Proj. Management	M4.1	Intellectual Property Management Plan Completed, Signed	90%	0
2.4 UT Exprisedian	M3.1.1	HT Catalyst Deposition Process Reproducible	70%	1
3.1 HT Fabrication	M3.1.2	HT Catalyst Treatment Process Reproducible	0%	2
2.2.LIT Characterization	M3.2.1	HT EC Characterization Reproducible	35%	2
3.2 HT Characterization	M3.2.2	HT XRD Characterization Reproducible	10%	3
3. HT Development	M3.1	HT Activity, Area Agrees w/ Homogenous MEA	25%	3
3.2. HT Characterization	M3.2.3	HT EXAFS/XANES Characterization Reproducible	0%	4
1.2 Catalyst EC Characterization	G1.2.1 (PROJ)	Electrocatalyst achieves (≥0.44A/mg and ≤50% mass activity loss) <u>or</u> (≥0.39A/mg and ≤ 40% mass activity loss).	80%	4
1.5 Catalyst Integration	G1.5.1 (PROJ)	Electrocatalyst achieves \geq 0.6A/mg, \leq 30% loss, and MEA PGM content \leq 0.13 g/kW @ 0.70V	60%	8
1.5 Catalyst Integration	D1.5.3	A set of MEAs (6 or more, each with active area $\ge 50 \text{ cm}^2$) which achieve all project targets is made available for independent testing at a DOE-approved location.		12

Approach – Two Distinct Thin Film Electrocatalyst Morphologies

Nanoporous Thin Film (NPTF)

MEA Conditioning State After (Dealloyed)

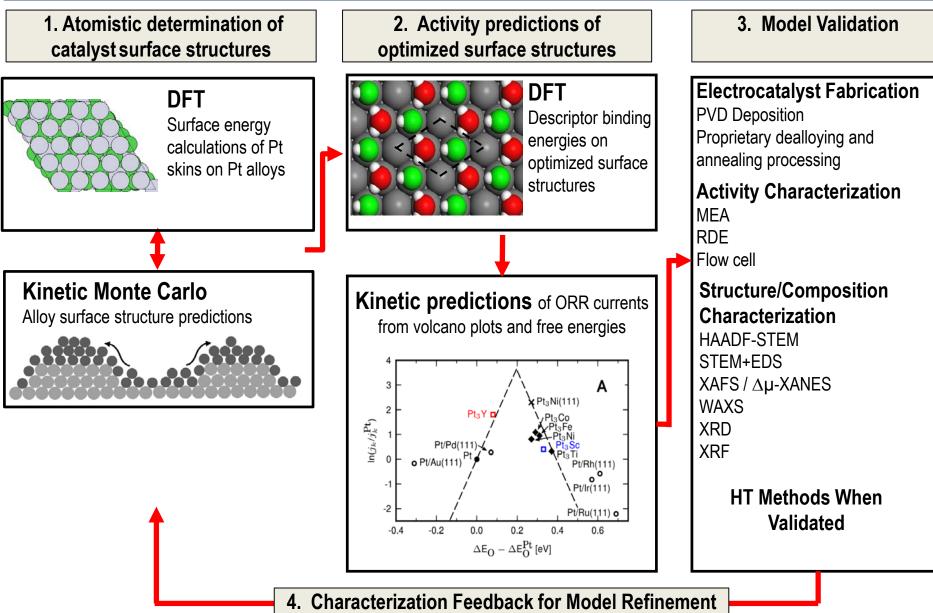
Before

NPTF Approach:

- 1. Structure/composition/process space optimization to maximize area and minimize leachable TM.
- 2. Proprietary stabilization approaches to minimize coarsening and TM dissolution.

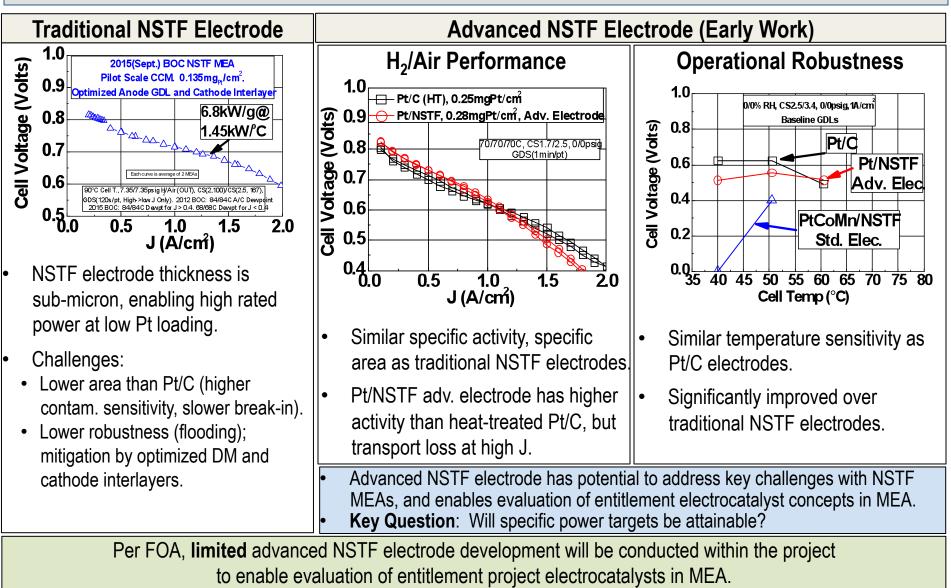
NPTF PtNi/NSTF, "P4A, TFA"			
	Status	Target	
Mass Activity (A/mg)	0.47	0.80	
Specific Area (m ² /g)	19	30	
Spec. Activity (mA/cm ² _{Pt})	2.5	2.6	

Ultrathin Film (UTF)

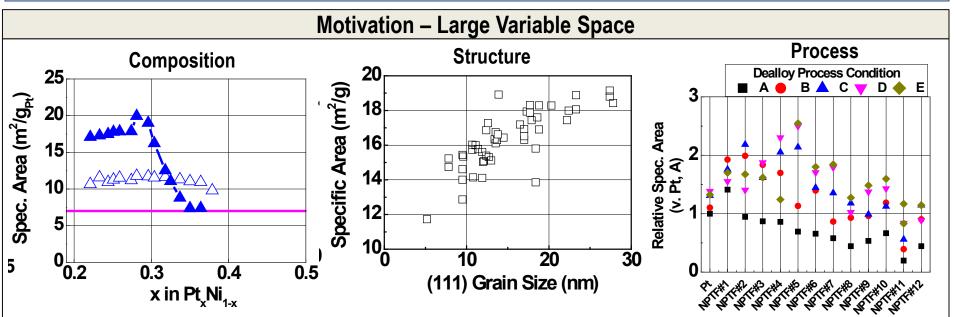

MEA Conditioning State Before After

UTF Approach:

- 1. Structure/composition/process space optimization to develop highly active, stable, and thin surface facets.
- 2. Maximize NSTF support surface area.

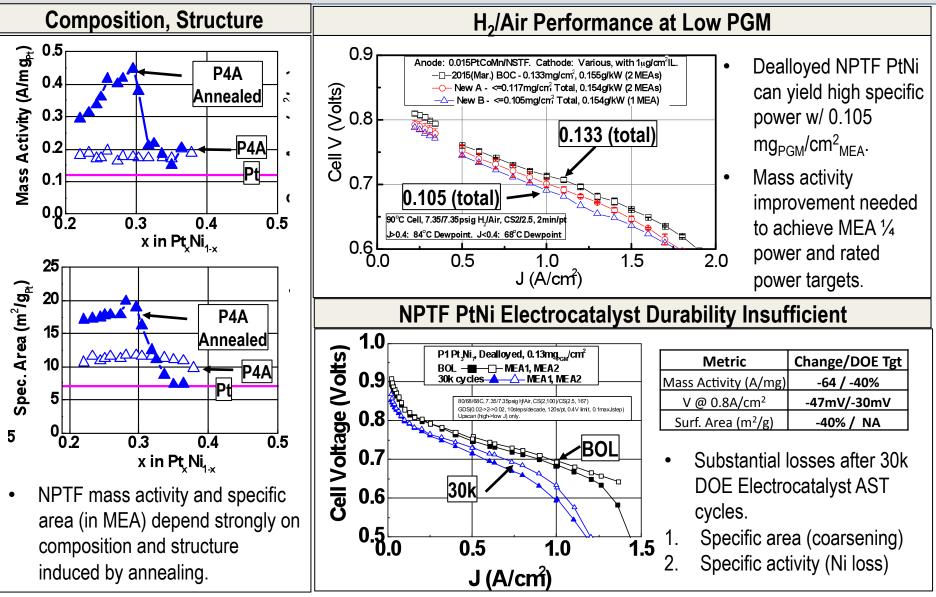

UTF "#4"/NSTF, Proprietary Process		
	Status	Target
Mass Activity (A/mg)	0.31	0.80
Specific Area (m ² /g)	19	20
Specific Activity (mA/cm ² _{Pt})	1.7	4.0

Approach – Electrocatalyst Modeling

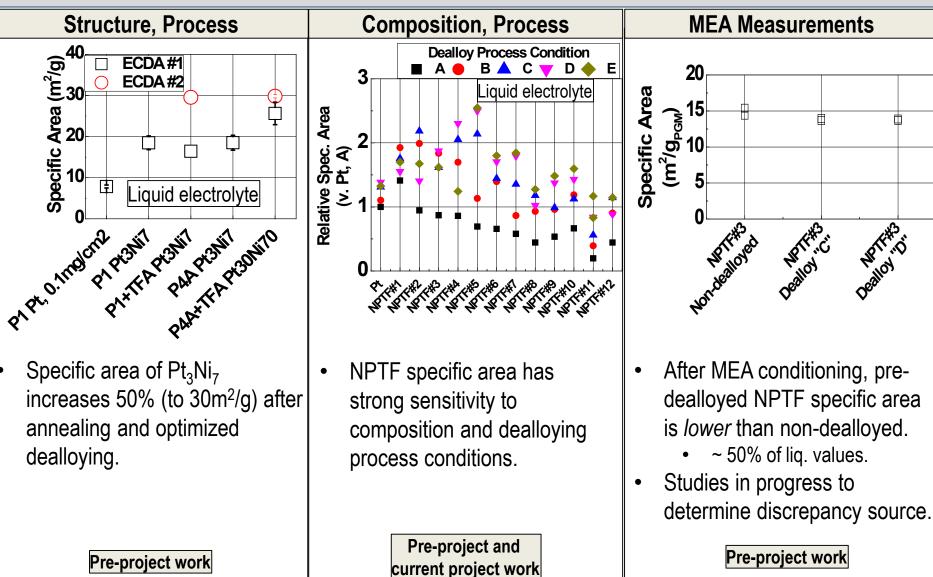

Science. Applied to Life.™

Approach – Advanced NSTF Electrode

Approach - High Throughput (HT) Electrocatalyst Development

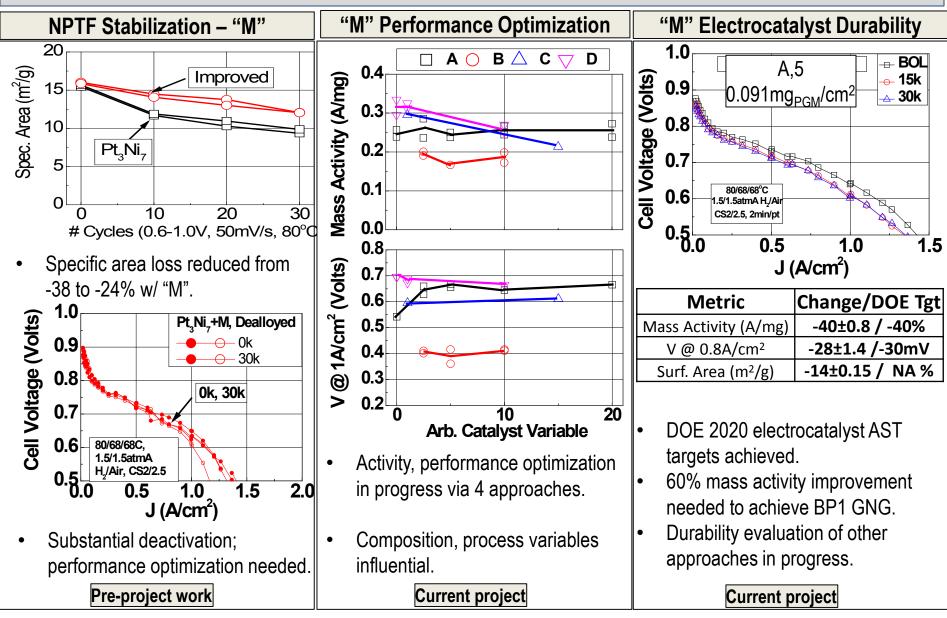

- Ultimate electrocatalyst performance and durability often has significant interdependencies on composition, structure, and processing conditions.
- Variable space: 5 comp. x 3 structure x 3 process levels = 45 unique electrocatalysts (one binary system)

HT Electrocatalyst	HT Electrochem.	HT Physical	HT Data
Fabrication	Characterization	Characterization	Management
Deposition - Feasible	Segmented FC - Feasible	XRF - Validated	Custom analysis software
Dealloying - TBD	Multi-channel flow cells -	XRD/WAXS –	 Validated/In Progress
Annealing - TBD	TBD	Feasible/Validated	Storage in SQL DB - TBD
		XAFS - TBD	

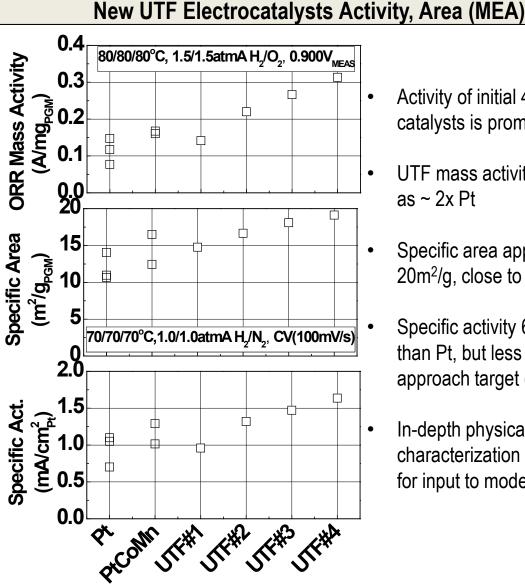

Significant first year effort to develop and validate HT methods.

Pre-Project Background – NPTF Pt_xNi_{1-x}/NSTF

Accomplishments and Progress – NPTF Dealloying Optimization

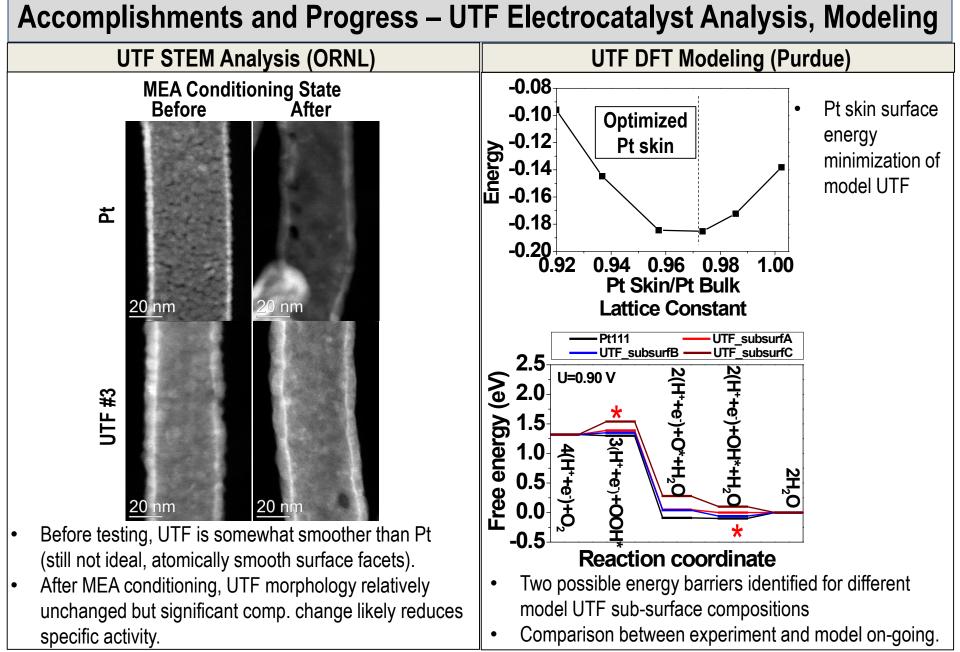

Ē

her the ci

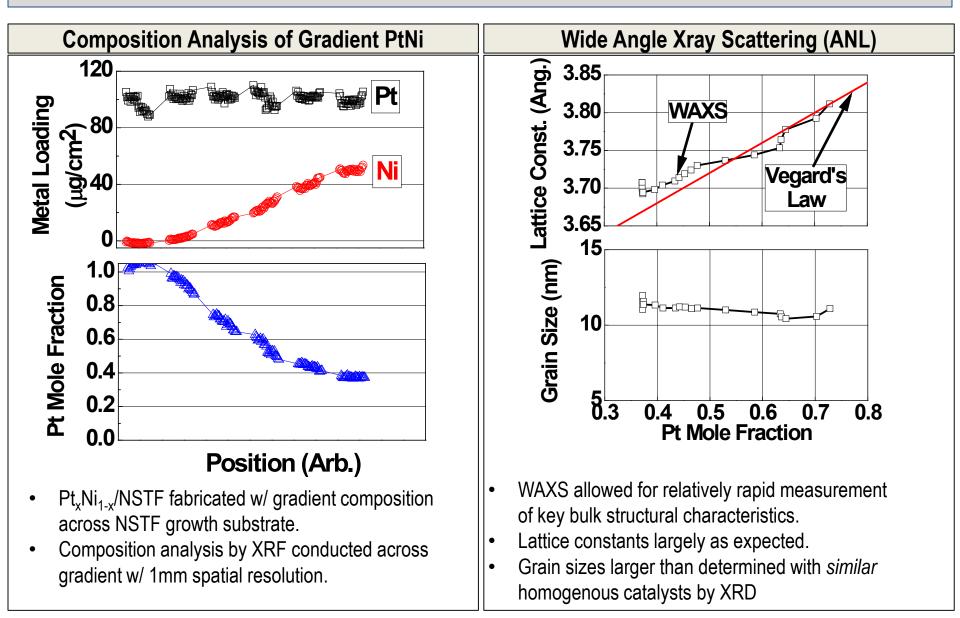

曲

Nerth Di

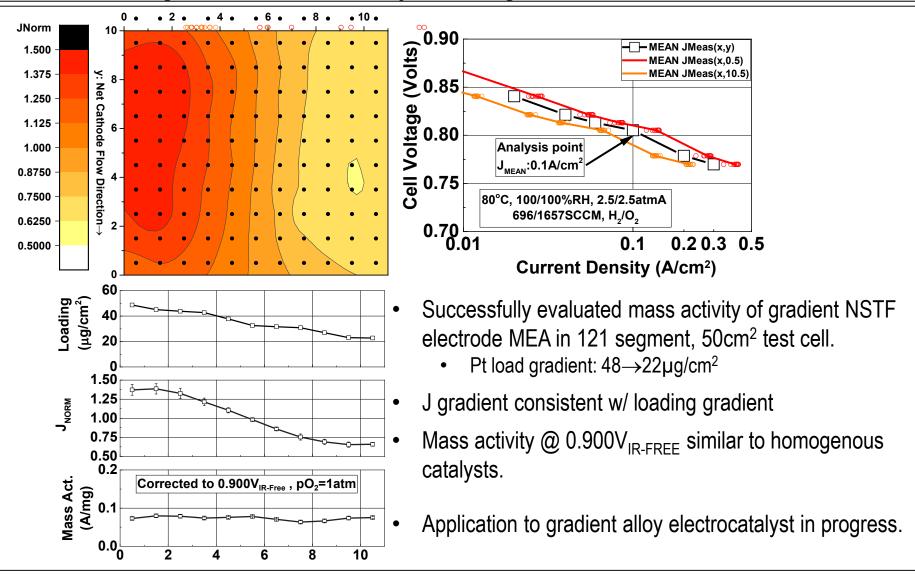

Accomplishments and Progress – Durable NPTF Development

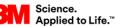


Accomplishments and Progress – UTF Electrocatalysts



- Activity of initial 4 UTF catalysts is promising.
- UTF mass activity as much as ~ 2x Pt
- Specific area approaches 20m²/g, close to UTF target.
- Specific activity 60% higher than Pt, but less than half of approach target (4mA/cm²_{Pt}).
- In-depth physical characterization in progress for input to modeling effort.




Accomplishments and Progress – High Throughput Development

Accomplishments and Progress – High Throughput Development

Segmented Cell MEA Activity of Loading-Gradient Pt/NSTF Electrode

Collaborations

- 3M Electrocatalyst Fabrication and Characterization, Electrode and MEA Integration, HT Development
 - Energy Components Program: A.Steinbach (PI), A. Hester, C. Duru, S. Luopa, A. Haug, J. Abulu, A. Komlev, K. Lewinski, M. Kuznia, and I. Davy.
 - Corporate Analytical Laboratory: J. Bender, M. Stephens, M. Brostrom, A. Gharachorlou
- Johns Hopkins University Dealloying Optimization, kMC Modeling, HT Development
 - J. Erlebacher (PI), L. Siddique
- Purdue University DFT Modeling of Electrocatalyst Activity, Durability
 - J. Greeley (PI), Z. Zeng
- Oak Ridge National Laboratory Structure/Composition Analysis
 - D. Cullen (PI)
- Argonne National Laboratory XAFS and HT Development
 - D. Myers (PI), J. Kropf
- FC-PAD Consortium
 - MEAs to be provided annually.

Barriers

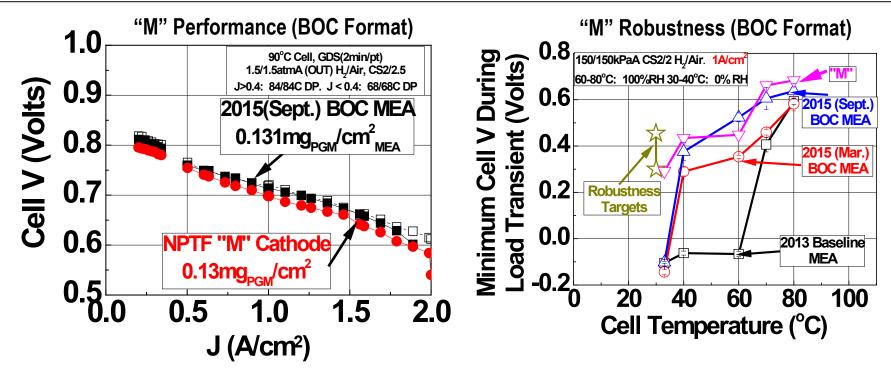
- 1. Significantly improved electrocatalysts will require optimization of large composition/process space.
- 2. Electrocatalyst AST durability of UTF electrocatalysts is not known; may be insufficient to achieve DOE and project targets.
- 3. Minimum stable UTF electrocatalyst thickness on support, fabricated with scalableprocesses, is not known.

Key Future Work – 2Q16-1Q17

- 1. Continue characterization studies of several new NPTF and UTF electrocatalysts to establish functional relationships between electrocatalyst physical properties, fabrication process parameters, and functional response.
- 2. Establish reliable high throughput electrocatalyst fabrication and characterization methods to accelerate development.
- 3. Refine kMC and DFT models to capture experimentally-observed trends for baseline NPTF and UTF electrocatalysts, to enable predictive capability for new electrocatalyst concepts.
- 4. Optimize first generation project "M" electrocatalysts to achieve project G/NG
 - NPTF or UTF ORR electrocatalyst achieves: (\geq 0.44 A/mg PGM and \leq 50% mass activity loss) <u>or</u> (\geq 0.39 A/mg PGM and \leq 40% mass activity loss).
- 5. Incorporate first generation electrocatalysts into advanced NSTF electrodes and evaluate for performance, operational robustness and durability at loadings approaching DOE and project targets.

Response to Reviewers' Comments

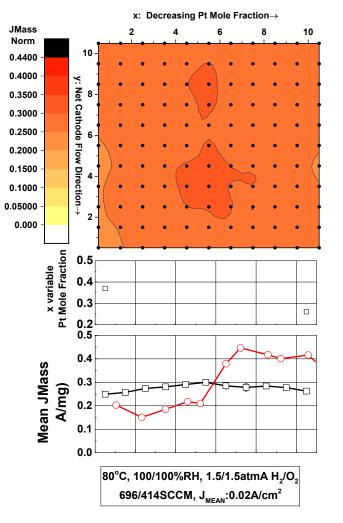
• This project has not yet been reviewed.

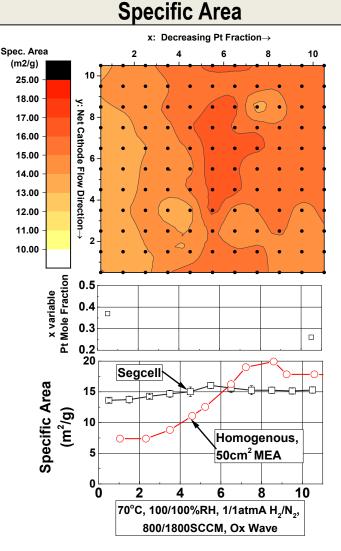

Summary

- NSTF ORR electrocatalyst development is based on two distinct thin film morphologies.
 - 1. Nanoporous thin film
 - Current status (in MEA): 0.47A/mg, 19m²/g, 0.091mg_{PGM}/cm²
 - Sensitive to composition, structure, and dealloying process conditions
 - 2. Ultrathin film
 - Current status (in MEA): 0.31A/mg, 19m²/g, 0.025mg_{PGM}/cm²
 - H_2 /Air performance is transport limited; need 2x higher absolute area.
 - Durability assessments initiated
- Stabilization approach ("M") has enabled electrocatalyst which achieves DOE 2020 durability target but activity low; further optimization in progress.
- High throughput electrocatalyst development has good prospects for significantly accelerating project development timeline.
 - 1. HT Fabrication
 - Deposition demonstrated
 - 2. HT Electrochemical Characterization
 - Segmented cell promising.
 - 3. HT Composition/Structure Characterization
 - Bulk composition and structure analysis demonstrated.

Technical Backup Slides

Backup Slide – "M" Best of Class MEA

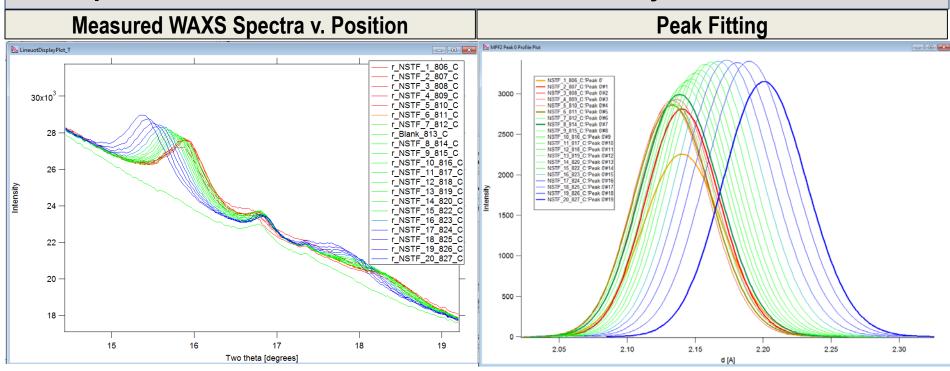



- "M" integrated into BOC MEA format (FC104) and evaluated for performance and operational robustness.
- Compared to 3M 2015(Sept.) BOC MEA (FC104), first "M" BOC MEA has:
 - Lower BOL mass activity (0.28 v. 0.39A/mg)
 - Lower rated and specific power (5.7 v. 6.8 kW/g)
 - Similar/improved operational robustness

Both MEAs include identical "X3" anode GDL, "B" cathode interlayer (16µg/cm² Pt/C), 3M-S 725EW 14µ PEM, and FF2 from FC104. Loadings are total MEA (anode, cathode, and interlayer).

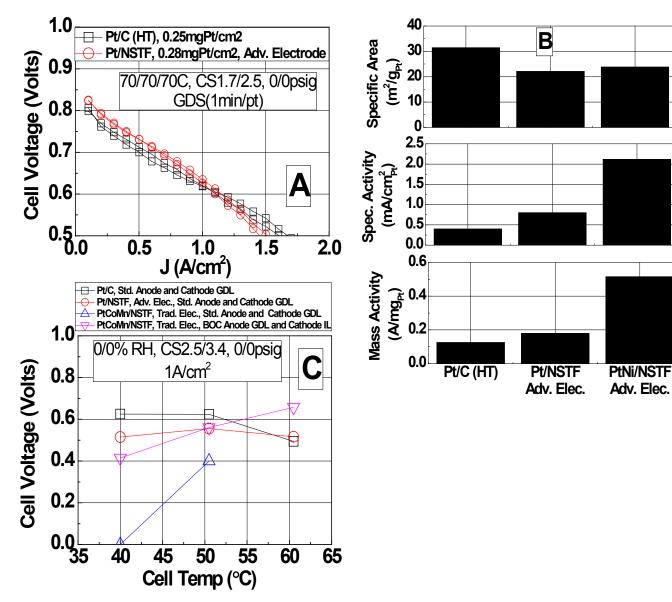
Backup Slide – HT MEA Evaluation of NPTF Pt, Ni_{1-x} (First Trial)

Mass Activity



- Annealed NPTF PtNi in segmented cell does not show expected 2x transition in activity and area at Pt₃Ni₇ ٠
- Segmented cell "peak" approximately at right composition, but response is very muted.
- Diagnostic work in progress. Applied to Life.™

Science.


24

Backup Slide – WAXS of Gradient PtNi Electrocatalyst

Backup Slide – Adv. Electrode Performance, Robustness, Activity

- A. At similar loading, Pt/NSTF in advanced electrode yields higher kinetic but reduced transport performance.
- B. Activity, area of Pt/NSTF and dealloyed NPTF PtNi/NSTF advanced electrodes compared to HT Pt/C; similar to traditional NSTF electrodes; suggests little/no activity penalty in MEA electrode.
 - Operational robustness (temperature sensitivity) of adv. NSTF electrode similar to Pt/C and traditional NSTF electrodes w/ optimized anode DM and cathode IL; significantly improved over traditional NSTF w/o optimized ad-layers.

C.