

CORROSION-RESISTANT NON-CARBON ELECTROCATALYST SUPPORTS FOR PEFCS

PI: Vijay K. Ramani Illinois Institute of Technology Date: 6/7/2016

Project ID # FC145

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and budget

Competitively selected project

- Project start date: 03/01/16*
- Project end date: 02/28/19
- Total project budget: \$ 3,397,431
 - Total recipient share: \$ 397,431
 - Total federal share: \$ 3,000,000
 - Total DOE funds spent**: < \$ 50,000

Partners

- Project lead: IIT, Chicago
- Partners (sub-contractors):
 - Nissan Technical Center, North America
 - University of New Mexico

* Official date of contract from DOE. Issue of sub-contracts were finalized on April 15th 2016. Kick-off meeting held on April 21st 2016

** As of 3/31/16

Overview

Barriers and DOE target

- Barriers to be addressed:
 - Durability
 - Performance
- Technical targets:

	Units	2020 Target
Loss in catalytic (mass) activity ^{a,b}	% loss	<40
Loss in performance at 0.8 A/cm ^{2 a}	mV	30
Loss in performance at 1.5 A/cm ^{2 b}	mV	30
Mass activity @ 900 mV _{iR-free} ^c	A/mg _{PGM}	0.44

^a-Table E1, ^b-Table E2; Appendix E of FOA; ^c DOE protocol per appendix E of FOA

Impact of carbon corrosion on PEFCs

Carbon is mainly used as an electrocatalyst support due to its:

- High electrical conductivity (> 20 S/cm)
- High BET surface area : 200 300 m²/g
- Low cost

Electrochemical oxidation of carbon occurs during fuel cell operation

• C+2H₂O→CO₂+4H⁺+4e⁻ E^o = 0.207 v vs. SHE

Carbon corrosion is accelerated:

- During start/stop operation (cathode carbon corrosion)
- Under fuel starvation conditions (anode carbon corrosion)

Kinetic and ohmic losses result due to:

• Pt sintering and loss of contact between Pt and C

Mass transport losses occur due to

Formation of hydrophilic groups => flooding

Research objectives

- Conducting, doped, non-PGM metal oxides (electron conductivity >0.2 S/cm)
- High surface area(>70 m²/g)
- Exhibits SMSI with Pt
- Corrosion resistant (DOE 2020 targets)

JISSAN

• High electrocatalyst performance (DOE 2020 targets)

Metal oxide	Stable potential window (vs. SHE) (pH 0-1)	Manifestation of SMSI	Possible dopants
TiO ₂ (4+, 60.5 pm)	-0.4 - 2.2 V	Yes	Nb (5+, 64 pm), Ta (5+, 64 pm), Mo (6+, 59 pm), W (6+, 60 pm)
Nb ₂ O ₅ (5+, 64 pm)	-0.2 - 2.2 V	Yes	Mo (6+, 59 pm), W (6+, 60 pm), Tc (7+, 56 pm), Re (7+, 53 pm)
Ta ₂ O ₅ (5+, 64 pm)	-0.7 - 2.2 V	Yes	Mo (6+, 59 pm), W (6+, 60 pm), Tc (7+, 56 pm), Re (7+, 53 pm)

Research objectives: Technical targets

Metric	Units	SoA (Pt/C) *	SoA (Pt/RTO)	Proposed approach status (Pt/TiO ₂ -Ta)**	End target	DOE 2020 target
Total PGM content	g kW ⁻¹	0.55	0.55	Not Available	0.25	<0.125
Total PGM loading	mg cm⁻²	0.4	0.4	0.6	0.25	<0.125
Voltage at 1.5 A cm ⁻² (air)	mV	0.45	0.48	0.3	0.55	N/A
Loss in mass activity ^{a,b}	% loss	32	33	<10%	<5%	<40
Voltage loss at 0.8 A cm ⁻² ^a	mV	81	9	< 15	<10	30
Voltage loss at 1.5 A cm ⁻²	mV	182+	20	N/A; 20 mV at 1Acm ⁻²	<20	30
Mass activity@900 mV _{iR-}	A mg ⁻¹ _{PGM}	0.07	0.07	ca. 0.05	0.3	0.44

^a-Table E1, ^b-Table E2; Appendix E of FOA; ^c DOE protocol per appendix E of FOA; **Pt/C refers* to *Pt/Graphitized Ketjen Black tested at NTCNA*; ***Results from entirely un-optimized MEAs* run primarily to test stability. ⁺*Pt/HSAC durability is much worse – MEA does not run beyond* 0.5 A cm⁻² after start-stop cycling.

Data from MEA

in a PEFC

Research objectives: 1st year milestones

Density Functional Theory - Doping of TiO₂ with Ta

Change in the electronic structure of supports as a result of doping

DFT optimized structure of TiO_2 (PBEsol functional). Cell parameters a=4.56, b=4.56, c=2.93 Å red – oxygen, blue - Ti

Conduction band 3 Energy [eV] Band gap at Γ point Fermi level -2 Valence band -3 -5Γ X M Г Z R ZX RM

DFT calculated band structure of TiO₂. Top HSE06 level, bottom PBEsol level

- TiO₂ is a semiconductor, absorbs in UV.
- Direct B-G of 1.82 eV at PBEsol level, 3.44 eV at HSE06 level (hybrid functional needed).
- Experimental reports 3.3-3.6 eV (UPS-IPS spectroscopy).

Density Functional Theory - Doping of TiO₂ with Ta

Change in the electronic structure of supports as a result of doping

 TiO₂ is a semiconductor, while doping of Ta creates a *n*-type semiconductor with increased conductivity - leads to "metallization"

ILLINOIS INSTITUTE

OF TECHNOLOGY

Design Porous TiO₂ supports

IISSAN

Synthesis and characterization of high surface area TiO₂ supports. Silica (i) Synthesis of TiO₂ support. template sol-gel technique alkoxides titanium as precursors ii Sacrificial support method (Templating) Cab-O-Sil L90 surface area ~90 m² g⁻¹, 0.22 µm Cab-O-Sil EH5, surface area ~400 m² g⁻¹, 0.14 μ m pyrolyzed at 850°C followed by leaching with 40 wt.% HF iii Characterization of TiO₂ support Morphology: SEM, N₂-sorption BET surface area, pore size analysis Composition: EDS, XPS, Elemental Mapping Structure : XRD electron conductivity (in-house test cell) Infiltration of TiO₂ support via ultra sonication, followed by pyrolysis Leaching the sacrificial silica support: Porous TiO₂ support

Scale-up of templated materials

E. Switzer, P. Atanassov A.K. Datye, Nanostructured Anode Pt-Ru Electrocatalysts for Direct Methanol Fuel Cells, *Topics in Catalysis*, 46 (2007) 334-338
E. Switzer, T.S. Olson, A. K. Datye, P. Atanassov, M.R. Hibbs and C.J. Cornelius, Templated Pt-Sn Electrocatalysts for Ethanol, Methanol and CO Oxidation in Alkaline Media, *Electrochimica Acta* 54 (2009) 989-995
A. Falase, K. Garcia, C. Lau, and P. Atanassov, Electrochemical and *in Situ* IR Characterization of PtRu Catalysts for Complete11 Oxidation of Ethylene Glycol and Glycerol, *Electrochemistry Communications*, 13 (2011) 1488–1491

Potential cycling to evaluate support and electrocatalyst

electrochemical stability/durability

The protocols recommended in solicitation **DE-FOA-0001224 (next slide)** will also be employed.

OF TECHNOLOGY

Potential cycling to evaluate support and electrocatalyst electrochemical stability/durability

Catalyst durability: *Ex-situ* and *in situ* carbon corrosion (start/stop)

Catalyst durability: *Ex-situ* and *in-situ* Pt dissolution (load cycling)

Potential cycling to evaluate support and electrocatalyst durability

- Three electrode cell with rotating disk electrode
 - Working electrode (WE) : Glassy carbon coated with catalyst support
 - Counter electrode : Pt foil
 - Reference electrode : Saturated calomel electrode (SCE)
 - Electrolyte : N₂ saturated 0.1M HClO₄
- Support loading on W.E.: 200-600 µg/cm²_{geo} (material dependent)

IISSAN

- Pt loading: 20µg_{Pt}/cm²_{geo}
- Potential cycling protocol

ILLINOIS IN

OF TECHNOLOG

Homogenizer (IKA)

MEA fabrication and optimization

- High performance dispersing homogenizers for uniformly dispersed catalyst ink preparation.
- Automated robotic spray system for catalyst layer deposition on GDL/membrane.

MEA fabrication

Spray system (Asymtek)

Design and optimization of catalyst layers (CL)

Performance Evaluation

MEA conditions (electrochemical diagnostics)				
Tempe	erature	0° 08		
Anode	Gas	H ₂		
	Relative humidity	100%		
	Flow rate (NLPM)	0.5		
Cathode	Gas	N ₂		
	Relative humidity	100%		
	Flow rate (NLPM)	0.5		

MEA conditions (iV performance)				
BoL and EoL iV	H ₂ -O ₂ /Air, 80°C, RH 40%, RH 100%, ambient			
performance	pressure, and 101 kPa (gauge pressure)			

- Fuel cell performance evaluation under standard DOE-protocols
- □ To better understand mass transport properties.
- ❑ Using dilute oxygen concentrations (~0.5-2% O₂) to obtain gas transport resistances (R_{diff} and R_{other}) in the catalyst layer.

1st year milestones and GNG

Task number	Milestone	Milestone description	Milestone verification process	Anticipated Date/Quarter	Current status
1	Milestone 1.1	2g of TiO ₂ -Ta*	B.E.T. surface area >30 m ² g ⁻¹ ; electronic conductivity > 0.2 S cm ⁻¹	M3/Q1	20 m ² g ⁻¹ ; 0.1 S cm ⁻¹
4	Milestone 4.1	2g of stable doped- metal-oxide support	B.E.T. surface area > 30 m ² g ⁻¹ ; electronic conductivity >0.2 S cm ⁻¹	M6/Q2	Not started
5	Milestone 5.1.1	2g of TiO ₂ using SSM	B.E.T. area >50 m ² g ⁻¹ ; particle size <70nm	M9/Q3	Not started
5	Milestone 5.1.2 Go/No-Go	2g of TiO ₂ -Ta support material using SSM	B.E.T. area >50 m ² g ⁻¹ ; particle size <70nm, conductivity > 0.2 S cm ⁻¹	M12/Q4	Not started

* Or any other conducting and stable doped-metal-oxide support exhibiting SMSI and meeting the milestone targets

IIT-Nissan Pt/non-carbon support research:

Example of previous results

Pt/TRO as cathode support – Prior DOE Project

Pt/TRO showed excellent durability under startstop protocol

OF TECHNOLOGY

Published in PNAS*

□ * Illustrative cover only!

Start-stop stability of Ta doped TiO₂ in a PEFC

Pt/TiO₂-Ta shows remarkable start-stop stability

Ability to achieve respectable performance (though short of Pt/TRO or Pt/C) with essentially zero optimization of the Pt/TiO₂-Ta electrode.

Figure . Comparison of fuel cell performance obtained with Pt/ HSAC, Pt/TRO, and Pt/ (TiO₂-Ta) before (closed symbols) and after (open symbols) exposure to the start–stop protocol specified in FOA (1,000 cycles). 25 cm² fuel cell; 80°C and 100% RH.

Note: TRO is TiO₂-RuO₂, developed in our previous project

Demonstration of SMSI in Ta doped TiO₂

- The existence of SMSI on Pt/TiO₂-Ta was ascertained by XPS and XAS.
- The decrease in the number of unfilled d-states confirms electron donation from the TiO₂-Ta support to Pt nanoparticles.
- SMSI mitigates Pt dissolution under load cycling conditions

DFT calculations for Ta-TiO₂ support

AD AMEDICA

OF TECHNOLOGY

Sol-gel synthesis

Sol-gel synthesis

Oxide	Precursor A	Precursor B	Annealing temperature	BET m²/g	Conductivity S/cm
Nb-doped TiO ₂	Nb₂(OC₂H₅)₁₀	Ti[OCH(CH ₃) ₂] ₄	650°C	14.6 ± 2.4	0.102 ± 0.01
Nb-doped TiO ₂	Nb₂(OC₂H₅)₁₀	Ti[OCH(CH ₃) ₂] ₄	550°C	21.2 ± 3.1	Non Conductive
Ta-doped TiO ₂	Ta₂(OC₂H₅)10	Ti[OCH(CH ₃) ₂] ₄	1000°C	3.4 ± 0.5	0.043 ± 0.007
Ta-doped TiO ₂	Ta₂(OC₂H₅)10	Ti[OCH(CH ₃) ₂] ₄	850°C	10.3 ± 1.3	0.024 ± 0.005
Ta-doped Nb ₂ O ₅	Ta₂(OC₂H₅)10	Nb₂(OC₂H₅)10	850°C	12.1 ± 1.7	Non Conductive

Remaining Challenges and Barriers TEM images of Pt/C and Pt/MO*

- □ There are significant differences between Pt/C and Pt/MO
- □ Pt particle size, Pt dispersion/agglomeration, Pt particle density.

Engineer wettability

* MO= metal oxides

Remaining Challenges and Barriers SEM pictures of Pt/C and Pt/MO* catalyst layers

 \square

	Pt/HSAC	Pt/MO
CL thickness (µm)	11	5.5
I/C mass ratio	0.9	0.9
B.E.T. surface area(m ² /g)	313	39
ε _i (ionomer volume fraction)	0.21	0.66

ILLINOIS INSTITUTE

OF TECHNOLOGY

NISSAN

AD AMEDICA

$$\varepsilon_{\rm i} \equiv \frac{V_{\rm I,wet}}{V_{\rm cath}} = \left(\frac{I}{C}\right) \frac{10}{f_{\rm t} d_{\rm I,dry}} \left(1 + \frac{M_{\rm w} d_{\rm I,dry} \lambda}{d_{\rm w} {\rm EW}}\right)$$

- MO is denser than carbon
- The Pt/MO CL is much thinner than Pt/HSAC.
- **D** The ionomer volume fraction (ε_i) is higher in Pt/MO
- Optimize MEA composition and design

Remaining Challenges and Barriers

Project just started!!!

Task number	Milestone	Milestone description	Milestone verification process	Anticipated Date/Quarter
1	Milestone 1.1	2g of TiO ₂ -Ta*	B.E.T. surface area >30 m ² g ⁻¹ ; electronic conductivity > 0.2 S cm ⁻¹	M3/Q1
4	Milestone 4.1	2g of stable doped- metal-oxide support	B.E.T. surface area > 30 m ² g ⁻¹ ; electronic conductivity >0.2 S cm ⁻¹	M6/Q2
5	Milestone 5.1.1	2g of TiO ₂ using SSM	B.E.T. area >50 m ² g ⁻¹ ; particle size <70nm	M9/Q3
5	Milestone 5.1.2 Go/No-Go	2g of TiO ₂ -Ta support material using SSM	B.E.T. area >50 m ² g ⁻¹ ; particle size <70nm, conductivity > 0.2 S cm ⁻¹	M12/Q4

Remaining Challenges and Barriers

Task Number	Milestone	Milestone Description	Milestone Verification Process*	Anticipated Date/Quarter
7	Milestone 7.1	2g of Pt/DS catalyst (SMSI)	Demonstrate SMSI; Meets Table 2 durability targets in RDE	M15/Q5
8	Milestone 8.1	Pt/DS catalyst	Demonstrate 10% increase in mass activity	M18/Q6
5	Milestone 5.2.1	2g of at least one doped oxide using SSM	B.E.T. area >70 m ² g ⁻¹ ; particle size <70nm; conductivity ; > 0.2 Scm ⁻¹ ; Stability and durability in RDE per DOE metrics	M21/Q7
6	Milestone 6.2.1 Go/No-Go	Deliver 2g of Pt/DS catalyst to NTCNA	20-40wt%Pt; > 70 m ² g ⁻¹ ; Pt particle size 3-6nm; meets DOE 2020 durability targets	M24/Q8

Remaining Challenges and Barriers

Task Number	Milestone	Milestone Description	Milestone Verification Process*	Anticipated Date/Quarter
10	Milestone 10.1	Pt/DS catalyst	Demonstrate "End Project" durability metrics and at least 80% of mass activity metric	M27/Q9
6	Milestone 6.2.2	Pt/DS catalyst	In addition to Milestone 6.2.1, meet "End Project" BoL mass activity target	M30/Q10
11	Milestone 11.1	Deliver cost model	Specify cost of best 2 Pt/DS materials	M33/Q11
12	Milestone 12.1 <mark>Go/No-Go</mark>	Deliver six 50 cm ² active area MEAs to DOE	Meet "End Project" durability, activity, and performance targets in Table 2	M36/Q12

Collaboration

Collaboration

Physical analysis

ILLINOIS INSTITUT

OF TECHNOLOGY

XRF

Facility and Equipment Capabilities

- Scanning Electron Microscope (SEM, EDS)
- X-ray Fluorescence spectrometer (XRF): To determine the Pt loading.
- □ 5 fuel cell test test-stations (Hydrogenics)
- Expertise in the fabrication and characterization of catalyst layer (CL): ionomer volume fraction, proton transport resistance, and oxygen transport resistance.

BET

NISSAN

Rotating Disk Electrode: *ex-situ* catalyst performance and durability

Proposed Future Work

FY 2016

- IIT: materials synthesis and characterization
 - ✓ Synthesis and characterization of Ta doped TiO₂ and other doped metal oxides using wet chemistry
 - $\checkmark\,$ Electrochemical evaluation of support and Pt/MO stability
 - ✓ Investigation of SMSI in Pt/doped-metal-oxide systems
 - ✓ Measurement of BoL ECSA and ORR activity of selected catalysts
- Nissan North America Inc.: durability/performance testing
 - ✓ Accelerated test protocols on materials provided by IIT
 - ✓ Fabrication / testing of sub-scale and 50 $cm^2 MEAs$
- University of New Mexico
 - ✓ DFT calculations: conductivity and SMSI of relevant doped metal oxides
 - \checkmark Characterization of the doped metal oxides and derived catalysts
 - ✓ High surface area support synthesis by SSM.

Summary

- Objectives and Approach:
 - Synthesize doped metal oxides for catalyst supports
 - High conductivity and BET surface area
 - Exhibits SMSI and corrosion resistant (attaining DOE 2020 targets)
- Relevance
 - Material-level mitigation strategies can solve cathode durability issues
- Accomplishments
 - DFT framework in place to study effect of doping on conductivity
 - Successfully synthesized doped metal oxides with conductivities of 0.1 S/cm
- Collaborations
 - Illinois Institute of Technology
 - Nissan Technical Center, North America
 - University of New Mexico