

Dimensionally Stable High Performance Membranes

Giner, Inc.

Cortney Mittelsteadt (P.I.) Jason Willey Zachary Green

Rensselaer Polytechnic Institute Chulsung Bae

June 7, 2016

Timeline

- Project Start Date
- Project End Date

2/21/2016 11/21/2016

N/A

Barriers addressed

- A. Durability
- B. Cost
- C. Performance

Technical Targets (DOE 2017 Targets)

- $0.02 \ \Omega.cm^2$ at 1.5 kPa H₂O Air inlet
- $<$20/m^2$
- > 5000 h lifetime, >20,000 RH Cycles

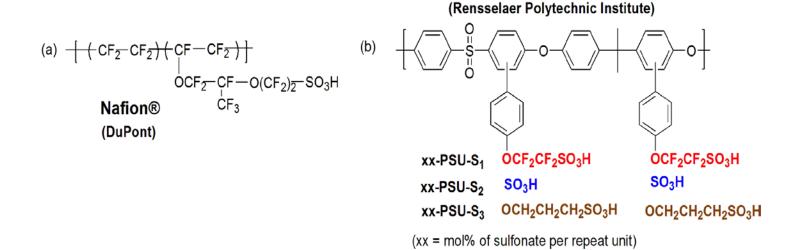
Partners

• Rensselaer Polytechnic Institute

Budget

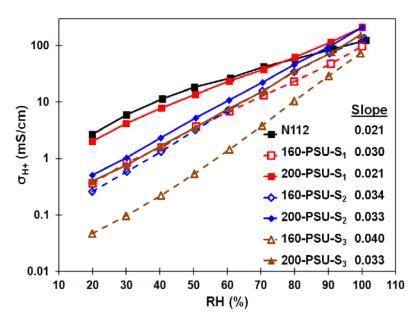
- Total Project Funding to Date: \$1.3k (2/29/2016)
- Total Project Value: \$150k
- Cost Share %:

Relevence: Why New PEM?


- State of the Art
 - PSFA membranes like Nafion exhibit:
 - Poor mechanical properties at high temperature
 - Poor performance at low RH
 - Increasing conductivity of PFSA membranes by increasing charge density:
 - Makes the membranes much weaker
 - Only increases performance incrementally
- Hydrocarbon-based membranes can be tailored to low RH, high temperature operation

Design of HC Membrane

- The new advanced ionomer will have:
 - Large segregated domains
 - High localized charge density
- Chulsung Bae has already developed membranes with these properties



PSU-S_x Series

• The sulfonated polysulfones developed by Prof. Bae were tested for conductivity at 100°C and varying RH


The 200-PSU-S₁ ionomer (IEC=1.94 meq/g) compared favorably with Nafion under decreasing RH conditions.

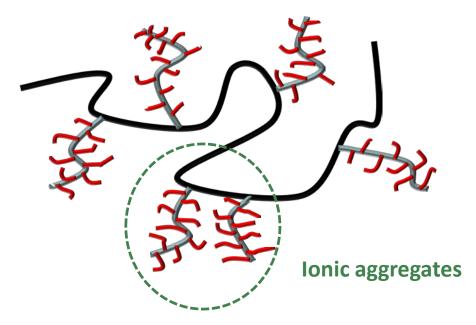
Block / Graft polymer Advantages

- Formation of ion conducting channels by microphase separation
- Hindering of swelling by surrounding nonsulfonated phase
- Lowering of MeOH permeability
- High mechanical stability

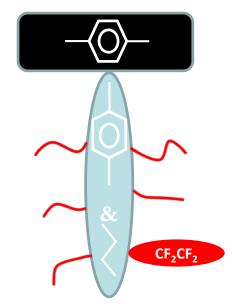
nonconducting

High ionic conductivity & good mechanical property

Graft copolymer

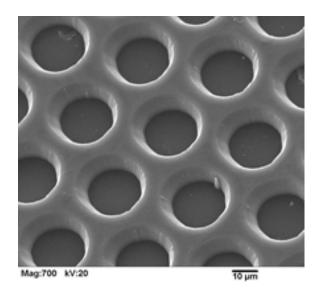

- **Graft copolymers** are segmented copolymers with a linear backbone of one composite and have structurally different branches of another composite.
- Graft co-polymerization is an attractive method to impart a variety of functional groups to a polymer.
- Graft copolymers allow the combination of properties of two highly incompatible polymeric constituents.
 Hydrophobic main chain

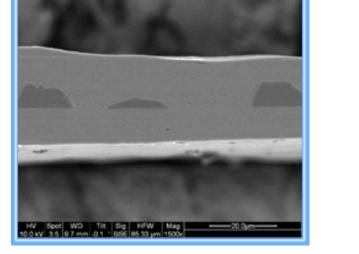
Hydrophilic graft chain



GINER Graft Copolymer PEM for Hydrogen Fuel Cells

High molecular weight hydrophobic polymer backbone
 Oligomeric graft chain
 Superacidic fluoroalkyl sulfonate


- Fluorine-containing hydrophobic main chain: good mechanical & chemical stabilities
 - Only C-C bond in the main chain
- Rigid & flexible oligomeric graft chains: high ion density
- Superacidic fluoroalkyl sulfonate group for H⁺ conductivity



Mechanical Stability

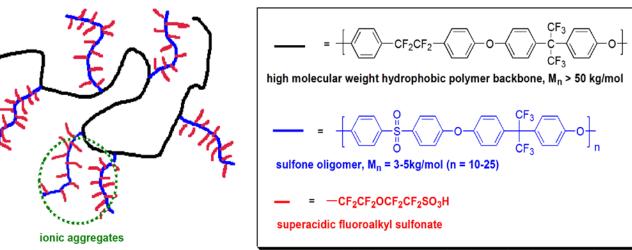
• Giner will incorporate some of the membranes provided by Prof Bae into its DSM supporting structure to provide mechanical strength

DSM mechanical structure Cross-section of a membrane This presentation does not contain any proprietary, containing containing the contain any proprietary.

Objective

- The overall technical objective of this program is to develop a fuel cell PEM displaying
 - High conductivity
 - Good mechanical qualities
 - High chemical durability
- For use in low-RH, high temperature applications

Tasks


- Prepare hydrocarbon membranes (RPI)
- Fabricate DSM using hydrocarbon membranes (Giner)
- Characterize the hydrocarbon membranes (Giner)
- Downselect membranes for Phase II

Approach: Task 1 – Prepare Hydrocarbon Membranes

• 20 graft and random copolymers will be prepared by RPI

Graphical illustration of proposed sulfonated graft polymers and representative structures of each unit

Approach:Task 2 Hydrocarbon DSM

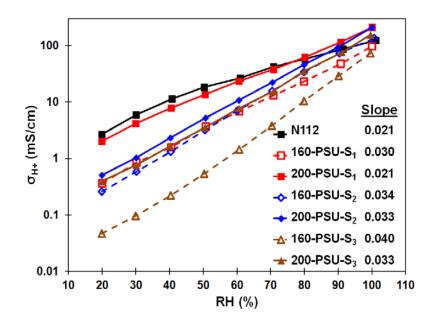
- Each of the 20 films produced by RPI will be incorporated into the DSM substrate
 - Comparison of properties will be done for the HC
 DSMs against the neat ionomer
- Close consultation with RPI will be done to ensure proper hot-pressing parameters
- Giner's SEM will be used to validate membrane adherance after pressing

Approach – Task 3 Membrane

Characterization

- Conductivity
 - Giner will test membrane conductivity at varying temperatures and RH levels (to 95%)
 - Five membranes can be tested at a time up to 140°C
- Gas Permeability
 - H_2 , O_2 and N_2 permeability will measured
 - Temperature up to 130°C
 - RH from 0 to 95%
- Water uptake
 - Using Giner's novel Sievert-type water uptake apparatus
 - RH levels from 0 to 100%
 - Temperatures from 25 to 95°C
- Physical Properties
 - Giner's DMAs will be used to measure stress-strain curves at various temepratures and RH levels

Approach: Task 4


Down select Membranes

- The membranes showing the best combination of properties will be selected for use in the Phase II
- The Phase II will consist of
 - Membrane optimization
 - MEA fabrication
 - Short- and long-term MEA operation in a hightemperature, low-RH fuel cell system

Achievements: (\$1333 Spent to Date)

- Task 1: Baseline Hydrocarbons Prepared
- Task 3: Baseline Membrane Measured

Future Work: Scheduling

Task	Month								
	1	2	3	4	5	6	7	8	9
1. Prepare hydrocarbon membranes (RPI)									
2.Fabricate DSM using hydrocarbon membranes (Giner)									
3.Characterize the hydrocarbon membranes (Giner)									
4. Downselect membranes for Phase II									
Report					Χ				X

Milestones	Month
Mid-program Report	5
Downselected membrane choices	9
Final Report	9

Collaborations

• Rensselaer Polytechnic Institute