

Novel Nanocomposite Polymer Electrolyte Membranes for Fuel Cells

Runqing Ou, Nader Hagh, and Ganesh Skandan (NEI Corporation – Somerset, NJ) Acknowledgement: U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Dr. Bahman Habibzadeh

June 8, 2016

Project ID#: FC153

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: 02/22/2016 Project end date: 11/21/2016

Barriers

- High cost of ionomer based polymer electrolyte membranes
- Decreased proton conductivity at high temperature
- Water management

Budget

Total project budget: \$150,000

Partners

Electrochem., Inc.

DoE technical targets for fuel cell membranes for transportation applications

Characteristic Target 2020 Units °C Maximum operating temperature 120 Area specific proton resistance at Ohm•cm² ≤ 0.02 Maximum operating temp and water partial pressures from 40-80 kPa 80°C and water partial pressures from 25-45 kPa Ohm•cm² ≤ 0.02 30°C and water partial pressures up to 4 kPa Ohm•cm² ≤ 0.03 -20°C Ohm•cm² ≤ 0.2 mA/cm² 2 Maximum oxygen cross-over mA/cm² Maximum hydrogen cross-over 2 Ohm•cm² Minimum electrical resistance 1000 Cost \$/m² ≤ 20 Durability **Mechanical** Cycles ≥ 20,000 Chemical Hours > 500

Objectives: The focus of the current program is to demonstrate feasibility of a novel concept for PEM that has not been explored before.

Abstract

The proposed Phase I program aims to develop a novel non-PFSA polymer electrolyte membrane, utilizing highly proton conducting heteropolyacids (HPAs) in an organic matrix in a way that has not been explored before. The novel HPA/polymer membrane has a unique structure that ensures that the active proton conducting species (HPA) are contained in a continuous interconnected channel. The overall objective of the Phase I program is to demonstrate the feasibility of a robust PEM that has high proton conductivity, low H₂ and O₂ cross-over and is highly durable for extended use in a fuel cell.

Polymer Electrolyte Membrane (PEM) for Fuel Cells

Illustration of polymer electrolyte membrane fuel cell operating on hydrogen fuel and oxygen from air

State-of-the-art PEM for Fuel Cells

- Perfluorosulfonic acid (PFSA) ionomers
- High cost
- Decreased proton conductivity at higher temperatures
- Water management
- CO poisoning

Non-Ionomer Approaches

- Heteropolyacid (HPA)
- High proton conductivity at room temperature
 - 2x10⁻² S/cm to 2x10⁻¹ S/cm
- Issues
 - HPA alone cannot be processed into flexible membrane
 - Decreased conductivity as additives in a polymer composite
 - Leaching out because of water solubility

Keggin structure, XM₁₂O₄₀ⁿ⁻

Technical Approach

- Polymer/HPA composite membrane
- HPA stored in microvascular networks
- Continuous proton pathway for improved conductivity
- HPA shielded to prevent leaching
- Polymer matrix to provide mechanical strength and gas barrier property
- Standard industrial processes

Preliminary Results

- Composite membrane fabricated
- Proton conductivity measured

Polymer/HPA composite membrane

Proton Conductivity

In plane	Length, cm	Width, cm	Thickness, cm	Resistance, ohm	Conductivity, S/cm
NEI-4	0.457	0.318	0.025	976.5	0.06
Nafion [®] 115	0.457	0.318	0.013	143.5	0.79
Through plane	Length, cm	Width, cm	Thickness, cm	Resistance, ohm	Conductivity, S/cm
NEI-4	2.240	2.240	0.025	4.63	0.001
Nafion [®] 115	2.240	2.240	0.013	4.40	0.001

* Membrane was stored in a container with saturated water vapor at room temperature (24°C). Membrane resistance was measured at room temperature (24°C).

Collaboration

Partner

• ElectroChem. Inc.

Project role

- Perform membrane tests
 - Proton conductivity
 - Hydrogen cross-over
- Compare with state-of-theart PEM

Proposed Future Work

- Fabricate high quality polymer/HPA composite membrane
- Characterize composite PEM
- Test membrane performance
- Compare with state-of-the-art PEM
- Improve processes

Summary

Objectives:	demonstrate feasibility of a novel concept for PEM that has not been explored before
Relevance:	novel composite PEM can significantly increase proton conductivity
Approach:	build a microvascular network of highly proton conductive HPA in a polymer matrix
Accomplishments:	initial samples fabricated with proton conductivity approaching that of Nafion [®] membrane

Contact

For more information please contact:

Dr. Runqing Ou (or) Dr. Nader Hagh **NEI Corporation**

400 Apgar Drive, Unit E Somerset, NJ 08873

50mersel, NJ 08873

Tel: 732.868.3141

Fax: 732.868.3143

Email: rou@neicorporation.com www.neicorporation.com

