

In-line Quality Control of PEM Materials

6/6/16 - 6/10/16

DOE Annual Merit Review, Washington D.C.

Author Andrew Wagner E-mail awagner@mainstream-engr.com Author Phil Cox E-mail pcox@mainstream-engr.com Author Paul Yelvington (P.I.) E-mail pyelvington@mainstream-engr.com

Mainstream Engineering Corporation 200 Yellow Place Rockledge, FL 32955 www.mainstream-engr.com This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #: MN016 Contract No.: DE-SC0013774 PM: Nancy Garland

Timeline and Budget

SBIR Phase I

- June 2015 March 2016
 - \$150,000
 - Total Project: \$150,000
 - Total recipient share: \$0
 - Total DOE funds spent: \$141,118

Barriers Addressed

- E. Lack of Improved Methods of Final Inspection of MEAs
- H. Low Levels of Quality Control

Technical Targets

Build a prototype system to simultaneously measure:

- Defects in a moving membrane web
- Membrane thickness over the full web width

Partners/Collaborators

 National Renewable Energy Laboratory: Mike Ulsh, Peter Rupnowski

<u>DOE Objectives</u>: Improved quality control to improve reliability and reduce automotive fuel cell stack costs to \$20/kW by 2020 at 500,000 units/year

DOE Targets

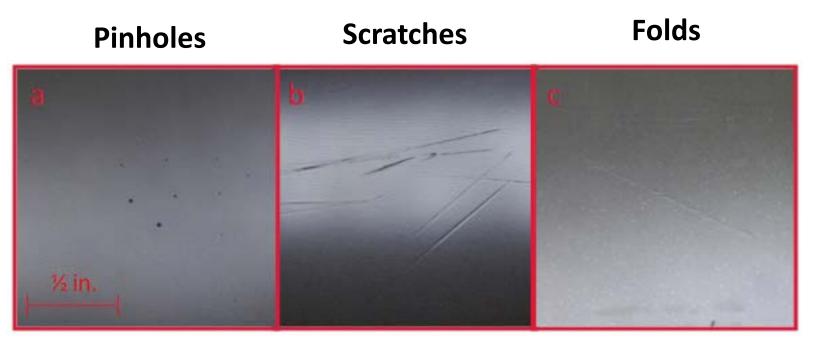
- Develop in-line diagnostics for component quality control and validate performance in-line
- Increasing the uniformity and repeatability of fabrication
- Reduce labor costs and improve reproducibility by increasing automation
- Identify cost drivers of manufacturing processes

Mainstream Engineering Targets

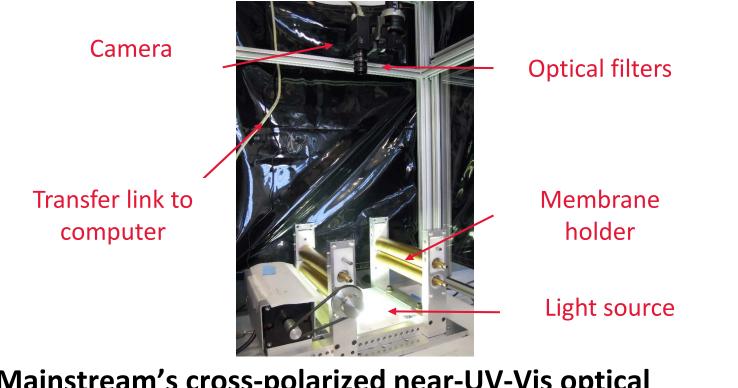
- Demonstrate real time automated in-line defect and thickness mapping on NREL web line
- Improve manufacturing process by providing real time feedback on quality metrics
- Scan the membrane with 100% coverage, marking and logging defective regions

Approach

In-line QC of PEM Materials


- Demonstrate membrane defect detection using in-line machine vision optical techniques
- Develop membrane thickness mapping capable of real time measurement across the full web
- Determine membrane rejection criteria
- Develop software to automate analysis, defect logging and real time identification of critical defects
- Fabricate and test a prototype incorporating an optical sensor system
- Apply methods to an array of membrane materials at web speeds up to 100 ft/min

Examined three primary types of defects


Images taken with edge-lit compact camera

Approach

Static Measurements

Determination of thickness and defect detection limits for the current optical hardware

Mainstream's cross-polarized near-UV-Vis optical arrangement improves the defect resolution

Approach

Moving Web Line Measurements

Mainstream's system tested on NREL's web line up to 100 ft/min

Rewind Station with web steering

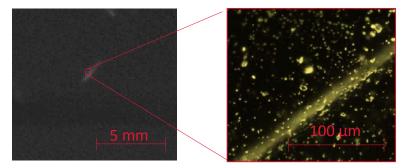
Light source and filters

Unwind Station

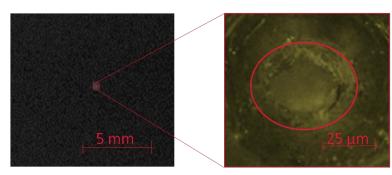
Mainstream's in-line optical diagnostics

Membrane web with tension control

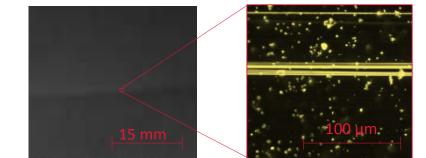
Milestones


Phase I Milestones	Phase I Result						
Identify the smallest discernible	 Unsupported membranes Supported membranes 						
defect size and characteristics for	\odot 25 μ m diameter pinhole \odot 100 μ m diameter pinhole						
PFSA membranes	I0 μm width scratch I0 μm width scratch						
	$ {}^{_{\rm D}}$ 100 μm width fold or crease $ {}^{_{\rm D}}$ 100 μm width fold or crease						
Determine membrane thickness to ±1	 Nafion[®]-115: ±1 μm for 132 μm film by polarimetry 						
μm for a 25 μm thick membrane	 Nafion[®]-211: ±0.5 μm for 25 μm film by absorption 						
Demonstrate defect and thickness	Demonstrated at up to 30 ft/min for Nafion®-211 with real-time						
analysis in real-time up to 60 ft/min	processing; 100 ft/min with image post-processing						
Develop membrane defect criteria	Found 100% of 100 μm pinholes in Nafion®-211 at 30 ft/min in						
and identify defects on a moving web	real-time; 100 ft/min with post-processing						
Integrate an encoder and printer to	Marked 35-of-35 defects in real-time. Printed every 1 foot for 50						
mark defects locations in real time	feet at variable web speed from 1 to 60 ft/min.						

Optical arrangement provides a significant improvement in the defect resolution for a given camera pixel count



Defect Limit-of-Detection


Smallest detectable defects where the left image is from the Mainstream's detector and the right is from a high-powered optical microscope

Fold defect in Nafion®-211 at 100 μm width by 500 μm length

Pinhole defect in Nafion[®]-211 at 25 μm

Scratch defect in Nafion®-211 at 10 μm width by 100 μm

Membrane Thickness Mapping

High resolution thickness mapping by polarimetry across the membrane web

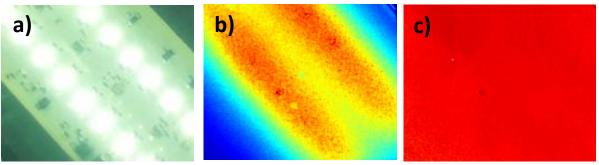
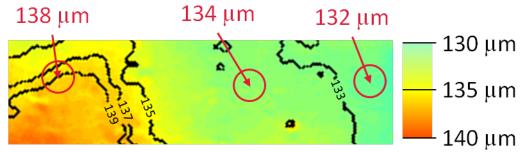
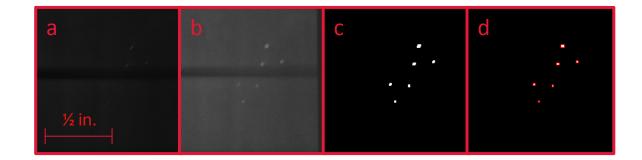



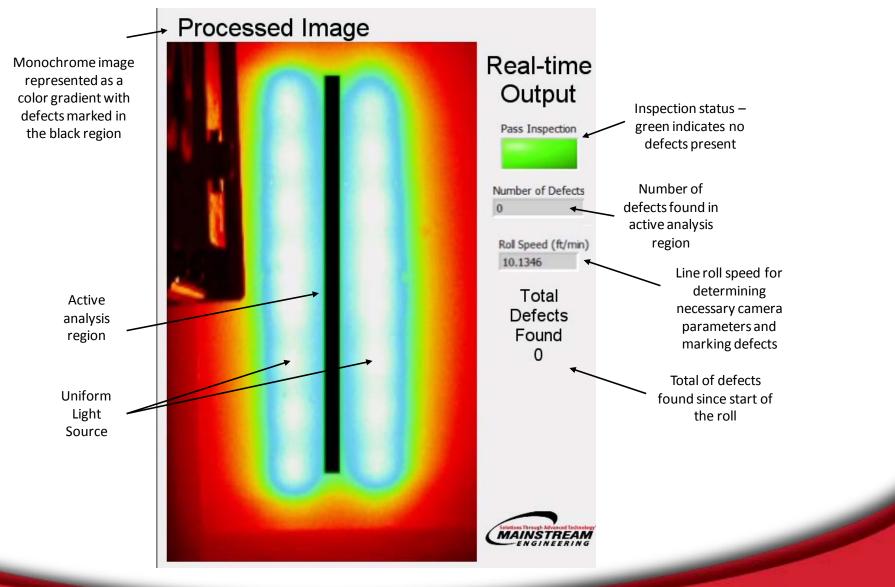
Image of Nafion[®]-115: (a) regular backlit photograph, (b) colorized image from Phase I area-scan camera, (c) image with background compensation

Thickness Map of a deformed Nafion[®]-115 sample, where the red circles are micrometer measurements

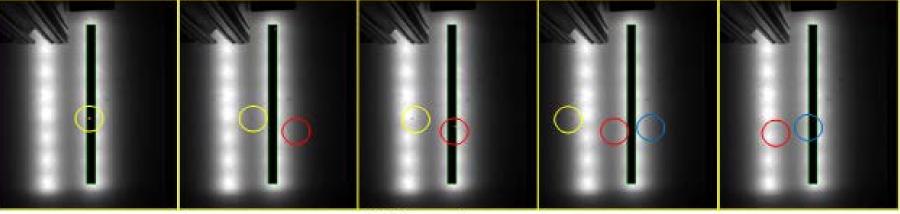


Custom software and optical enhancement provides improved defect resolution

The software process

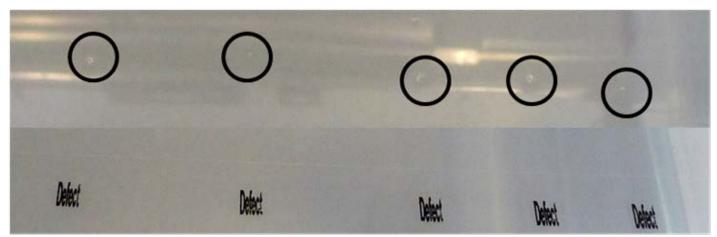

а	b	с	d
Image acquisition and transfer from camera to computer	Image enhancement effects	Image conversion to binary image	Defect detection and logging

Resultant image


Prototype Image Analysis UI

Defect Detection up to 100 ft/min

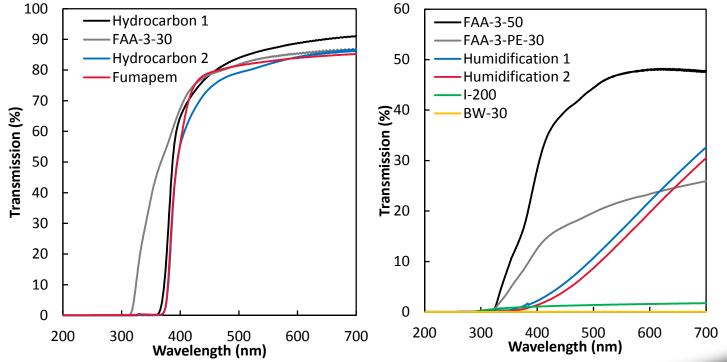
- Defects accurately detected in a range of supported and unsupported
 PEM membranes
- 40/40 100 μm and 40/40 500 μm pinhole defects identified
 - In real-time up to 30 ft/min, with post-processing up to 100 ft/min
 Time


Roll direction

Stop-frame time series of images showing roll-to-roll defect detection in Nafion[®]-211 at 30 ft/min

Defect Location Printing

- PET defects detected at 10 ft/min marked by the printer
- Encoder used to measure roll speed and determine printer timing



Five 500 μ m pinhole PET defects, highlighted with black circles, automatically detected and marked by Mainstream's setup at 10 ft/min

Other Membrane Applications

- Alternative membranes for reverse osmosis, anion exchange, hydrocarbon PEM, and electrolysis
- All transmit over 10% in the UV/Vis except for I-200 (AEM) and BW-30 (reverse osmosis)

Collaborations

Institution	Туре	Extent	Role and Importance
National	Federal	Major	Provided technical assistant with patented
Renewable	Laboratory		technique, full-scale web line for testing up
Energy Lab			to 100 ft/min

Remaining Challenges and Barriers

Remaining Objectives

- Knowledge of smallest required limit of detection
- Testing of smallest defect with upgraded hardware
- Full automation of software and hardware
- Data on real web-lines
- Trade-offs between cost and accuracy
- Alternative membrane application testing

Key Barriers

- Access to industry web-lines
- Testing on most relevant membranes
- Full understanding of system requirements

Technology Transfer Activities

- Mainstream is pursuing SBIR Phase II funding to develop the system to a TRL 7 and commercialize the product
- Mainstream has an option to license two patents from NREL
- Plan to demonstrate the prototype system on two industrial web lines in addition to NREL
- While the PEM fuel cell market is the primary focus, the technology is applicable to other markets such as reverse osmosis, electrolysis, and protective films

Proposed Future Work

Task Name	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Task 1: Create Defective Membrane and Identify Defect Size that Leads to Cell Failure	•			•				
Task 2: Determine Detection Limit for Defects and Thickness with New Hardware		_	_	_		•		
Task 3: Develop and Package Automated, Real-time Software	•	_			-			
Task 4: Determine Trade-offs in Equipment Sensitivity and Cost			•	_		-		
Task 5: Design and Fabricate Full-Scale Prototype System			•	_			-	
Task 6: Demonstrate Prototype System on Full Speed Membrane Line					•	_	_	-
Task 7: Explore Viability for Alternative Membrane and Film Applications		_	_	_	_			•
Task 8: Manage Phase II Effort	•							

Proposed Future Work

Proposed Work

- Improve resolution to 4 µm incorporating high-resolution camera and high-speed processor
- Scale system to real-time measurements of thickness over 24-inch web
- Demonstrate reliability of packaged system for defect detection up to 100 ft/min

Methods to Mitigate Risk

- Leverage NREL experience
- Leverage expertise from other projects
- Involve potential customers early in the development process
- Design a low-cost variant for applications with looser tolerances
- Explore alternative applications to broaden market and drive down cost

Key Milestones

- 4 μm defects at 100 ft/min
- 0.5 μm thickness resolution
- 5σ false-positive and negative rate
- Fully packaged prototype (TRL 7)

Go/No Go Decisions

- Full-width thickness mapping across a 24-inch web at 30 ft/min
- Defect detection across 24-inch web at 30 ft/min

- Pinholes as small as 25 µm were successfully identified in static samples with the low cost camera system
- Demonstrated thickness mapping to a resolution of ± 1 µm for Nafion[®]-115 and Nafion[®]-211
- Demonstrated the performance of the enhanced optical techniques with 18 membranes and films including a variety of supported and unsupported membranes
- Real-time identification of 100% of 100 μm induced defects in Nafion[®]-211 at 30 ft/min on NREL's web line
- Defect type and position successfully logged electronically and location printed on the web

SUPPORTING SLIDES

Mainstream Engineering Corporation

Mainstream Engineering Corporation

- Small business incorporated in 1986
- 100+ employees
- Mechanical, chemical, electrical, materials and aerospace engineers
- 100,000 ft² facility in Rockledge, FL
- Laboratories: electric power, electronics, materials, nanotube, physical and analytical chemistry, thermal, fuels, internal combustion engine
- Manufacturing: 3- and 5- axis CNC and manual mills, CNC and manual lathes, grinders, sheet metal, plastic injection molding, welding and painting

1-Administrative Offices 4-Production 2-Research and Development 5-Product Development

Capabilities

- Basic Research, Applied Research & Product Development
- Transition from Research to Production (Systems Solution)
- Manufacture Advanced Products

Mission Statement

To research and develop emerging technologies. To engineer these technologies into superior quality, military and private sector products that provide a technological advantage.

3-Research and Development

SBIR Successes and Awards

- 95% DOD Commercialization Index
- SBIR spinoffs QwikProduct Line
- SBIR spinoffs Military Product Line
- Honors
 - 2014 DOE's SBIR/STTR Small Business of the Year
 - 2013 Florida Excellence Award by the Small Business Institute for Excellence in Commerce
 - Winner Florida Companies to Watch
 - Blue Chip Enterprise Initiative Awards
 - Job Creation Awards
 - Two SBA's Tibbetts Awards for Commercialization
 - State of Florida Governor's New Product Award
 - SBA's Small Business Prime Contractor of the Year for the Southeastern U.S.
 - SBA's Administrator's Award for Excellence

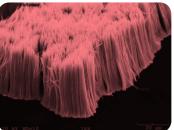
Mainstream's Focus Areas

THERMAL CONTROL

- High Heat Flux Cooling
- Thermal Energy Storage
- Directed Energy Weapons
- Rugged Military Systems


ENERGY CONVERSION

- Combustion
- Diesel/JP-8 Engines
- Biomass Conversion
- Alternative Fuels
- Fuel Cells


TURBOMACHINERY

- Compressors
- Turbines
- Bearings/Seals
- Airborne Power Systems

POWER ELECTRONICS

- High Speed Motor Drives
- Hybrid Power Systems
- Solar/Wind Electronics
- Pulse Power Supplies
- Battery Chargers

MATERIALS SCIENCE

- Thermoelectrics
- Batteries/Ultracapacitors
- Hydrogen Storage
- E-Beam Processing
- Nanostructured Materials

CHEMICAL TECHNOLOGIES

- Heat Transfer Fluids
- Catalysis
- Chemical Replacements
- Water Purification
- Chemical Sensors