

# MT011 Ground Support Equipment Demonstration

Jim Petrecky

This presentation does not contain any proprietary, confidential, or otherwise restricted information.



OVERVIEW RELEVANCE

### **Program Overview**

**Cargo Tractor Demonstration Program** 







#### **Timeline**

- Project Start Date | 1/1/13
- Project End Date | 3/31/17
- Percent Complete | 76%

#### **Barriers**

- Exposure to elements
- Airport emissions
- Aggressive load profile

### **Budget**

- Total Funding | \$4.996M
- DOE Share |\$2.497
- Partners Share | 50.03%
- Funding in FY15 | **\$0**
- Funding in FY16 | \$462k

#### **Partners**

- Plug Power
- FedEx Express
- Charlatte America
- Memphis-Shelby AA
- Memphis Fire Services





- 15 fuel cell cargo tractors
- Memphis airport for 2 years
- H2 station on airport ramp

### A Real Economic Alternative



#### A real economic alternative to diesel assets

- Value prop that makes sense
- Readily available fuel
- Service organization to maintain asset operation
- Supply chain to provide parts to maximize uptime



### **Dept. of Energy Objectives**

- Higher energy efficiency
- Lower petroleum demand
- Lower carbon emissions
- Lower energy expenditures

#### **Value Prop Drivers**

- Energy efficiency: 45% efficient fuel cells
- Energy recovery via regenerative braking: 25% recovery
- Decreased maintenance costs
- Decreased fuel costs

### **Ancillary Benefits**

- Ability to evaluate how EV tractors are being used
- Ability to identify misuse to prevent increased failures

#### **Market Drivers**

- Clean zero emissions
- Less noise
- Operational flexibility no downtime due to exhaust system regeneration
- Cost of compliance o EPA Tier 4 Final standards

### **Hydrogen Economics**





| Supply<br>Method | Comments                                                                                                      | Price (\$/kg)<br>Fuel Only | Trucks | _   | Price (\$/kg)<br>Fuel + Infra |
|------------------|---------------------------------------------------------------------------------------------------------------|----------------------------|--------|-----|-------------------------------|
| Gaseous          | - Inefficient, generally<br>lower volumes (200 kg)<br>- Generally lower pressure<br>(2400 PSI), partial fills | \$12.00                    | 5      | 800 | \$15.75                       |



| Supply<br>Method | Comments                                                                          | Price (\$/kg)<br>Fuel Only | Trucks | Usage<br>(kg/mo) | Price (\$/kg)<br>Fuel + Infra |
|------------------|-----------------------------------------------------------------------------------|----------------------------|--------|------------------|-------------------------------|
| Liquid           | - 20x more efficient than gaseous tube trailers - Liquid tanks can hold ~4,000 kg | \$4.00                     | 100    | 16,000           | \$5.25                        |



| Supply | Comments              | Price (\$/kg) | Trucks | Usage   | Price (\$/kg) |
|--------|-----------------------|---------------|--------|---------|---------------|
| Method |                       | Fuel Only     |        | (kg/mo) | Fuel + Infra  |
| Onsite | - Eliminates delivery | \$2.00        | 500    | 80,000  | \$2.50        |
|        | (40-60% of cost)      |               |        |         |               |

### **Hydrogen Economics – Liquid**



### **Energy Required**

| Shift Power | Efficiency    | Fuel Required | Fuel Required | Fuel Cost | Fuel Cost |
|-------------|---------------|---------------|---------------|-----------|-----------|
| kW-hr       | %             | kW-hr         | Units of Fuel | \$/Unit   | \$/Shift  |
|             | Fuel Cell     |               | H2 kg         | \$/kg     |           |
| 50          | 45%           | 111           | 3.3           | \$5.25    | \$17.50   |
| 50          | Diesel Engine |               | Diesel gal    | \$/gal    |           |
|             | 20%           | 250           | 6.6           | \$2.27    | \$14.95   |

#### However...

- When a diesel tractor needs to stop, mechanical brakes are applied to stop it. The energy dissipates as heat and costs a fair amount in maintenance to change brake pads.
- When an electric vehicle needs to stop, the electric motor can stop the vehicle while changing a
  portion of that kinetic energy to stored electrical energy.

#### With 25% Regeneration

| Shift Power | Efficiency    | Fuel Required | Fuel Required | Fuel Cost | Fuel Cost |
|-------------|---------------|---------------|---------------|-----------|-----------|
| kW-hr       | %             | kW-hr         | Units of Fuel | \$/Unit   | \$/Shift  |
|             | Fuel Cell     | Evalle        | H2 kg         | \$/kg     | A COLO    |
| 50          | 45%           | 83            | 2.5           | 5.3       | \$13.13   |
|             | Diesel Engine | The same      | Diesel gal    | \$/gal    |           |
|             | 20%           | 250           | 6.6           | 2.3       | \$14.95   |

### **Hydrogen Economics – Onsite H2**



### **Energy Required**

| Shift Power | Efficiency    | Fuel Required | Fuel Required | Fuel Cost | Fuel Cost |
|-------------|---------------|---------------|---------------|-----------|-----------|
| kW-hr       | %             | kW-hr         | Units of Fuel | \$/Unit   | \$/Shift  |
| 50          | Fuel Cell     |               | H2 kg         | \$/kg     | 1         |
|             | 45%           | 111           | 3.3           | \$2.50    | \$8.33    |
|             | Diesel Engine |               | Diesel gal    | \$/gal    | 3411      |
|             | 20%           | 250           | 6.6           | \$2.27    | \$14.95   |

#### However...

- When a diesel tractor needs to stop, mechanical brakes are applied to stop it. The energy dissipates as heat and costs a fair amount in maintenance to change brake pads.
- When an electric vehicle needs to stop, the electric motor can stop the vehicle while changing a
  portion of that kinetic energy to stored electrical energy.

#### With 25% Regeneration

| Shift Power | Efficiency    | Fuel Required | Fuel Required | Fuel Cost | Fuel Cost |
|-------------|---------------|---------------|---------------|-----------|-----------|
| kW-hr %     |               | kW-hr         | Units of Fuel | \$/Unit   | \$/Shift  |
| 50          | Fuel Cell     | 2 ( 100 ( 7)  | H2 kg         | \$/kg     |           |
|             | 45%           | 83            | 2.5           | \$2.50    | \$6.25    |
|             | Diesel Engine |               | Diesel gal    | \$/gal    | 27-       |
|             | 20%           | 250           | 6.6           | \$2.27    | \$14.95   |

### **Expansion of GSE Inventory**



| US Airline GSE Market          |        |             |             |  |  |  |  |  |  |
|--------------------------------|--------|-------------|-------------|--|--|--|--|--|--|
| Type of Equipment              | Units  | % of Market | Cumulative  |  |  |  |  |  |  |
| Tow Tractors                   | 27,978 | 45%         | 45%         |  |  |  |  |  |  |
| Belt Loaders                   | 12,395 | 20%         | 65%         |  |  |  |  |  |  |
| Pushback Tractor               | 6,068  | 10%         | <b>75</b> % |  |  |  |  |  |  |
| <b>Ground Power Unit (GPU)</b> | 4,591  | 7%          | 82%         |  |  |  |  |  |  |
| Cargo (Container) Loader       | 4,493  | 7%          | 90%         |  |  |  |  |  |  |
| Airstarts                      | 2,526  | 4%          | 94%         |  |  |  |  |  |  |
| Other                          | 3,859  | 6%          | 100%        |  |  |  |  |  |  |
| Total GSE Market               | 61,910 | 100.0%      |             |  |  |  |  |  |  |

#### **Belt Loaders**

Loads from ground level to aircraft storage areas by way of conveyer belt



#### **Pushback Tractor**

Pushes airplane backwards away from the gate



#### **Ground Power Unit**

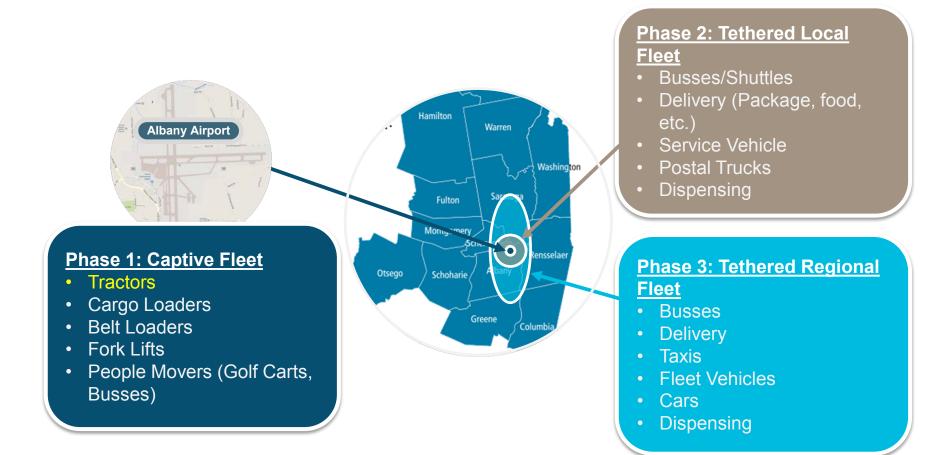
Supplies power/air conditioning to the aircraft while at gate or during loading



#### **Container Loader**

Loads containers from ground level to aircraft by lifting via a platform




#### Airstart

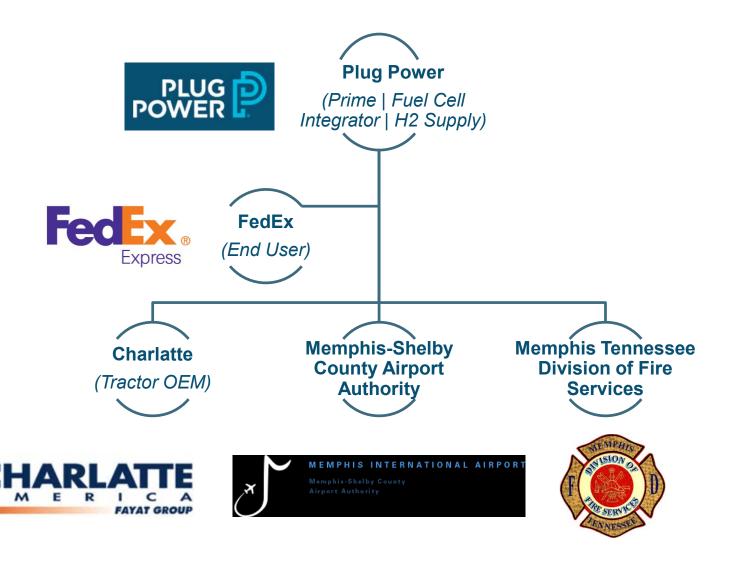
Provides the initial rotation to start gas turbine engines



### **Development of a H2 Ecosystem**






Develop a comprehensive plan and roadmap to fund, develop and implement a **repeatable** expansion of hydrogen fuel and mobile and stationary power applications for a regional deployment.



## COORDINATION

### **Program Team**







# APPROACH

### **Defining Requirements**



#### **Vehicle Testing**

- Testing in Latham
- Charlatte CT5E tractor
- FedEx Express dollies
- Shock testing in Memphis

#### **Route Simulations**

Worst case start/stop



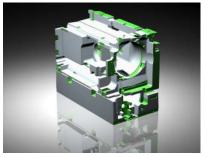


### Fuel Cell Design



### **Drop-in-Place Replacement For Battery**




#### **Fuel Cell**

- Stack (power)
- Battery (transient soak)



**H2 Tank** 

Energy (run time)



**Ballast** 

Weight (traction)



**GenDrive Specs** 

- Drawbar: 5,000 lbs.
- Towing Capacity: 40,000 lbs.
- Voltage: 80VDC
- Power: 22 kW
- 100% Outdoor Operation
- H2 Storage: 3.6 kg
- Hybrid PEM FC / Li-Ion Battery Arch.
- 4,000 lbs.

### **Protection from Airport Emissions**



#### **Activated Carbon Filter**

- Donaldson adsorption filter
- Removal of oil, hydrocarbon and vapors
- Removal of particulate contamination in the air stream

### No evidence of effect on systems during operation



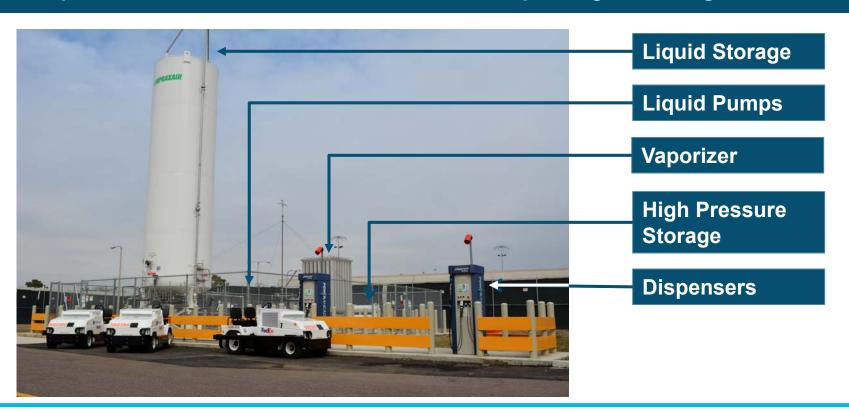
| Airport Emissions |                 |                                                                                          |  |  |  |  |
|-------------------|-----------------|------------------------------------------------------------------------------------------|--|--|--|--|
| Constituent       | Constituent     | How Created                                                                              |  |  |  |  |
| Carbon Dioxide    | CO <sub>2</sub> | Product of hydrocarbon (jet fuel / diesel / gasoline)                                    |  |  |  |  |
| Nitrogen Oxide    | NOx             | Product of when air (nitrogen / oxygen) passes through high temp/pressure combustion     |  |  |  |  |
| Hydrocarbons      | HC              | Product of incomplete fuel combustion (aka volatile organic compounds (VOCs)             |  |  |  |  |
| Carbon Monxide    | CO              | Product of incomplete combustion of carbon in fuel                                       |  |  |  |  |
| Sulfur Oxides     | SOx             | Produced of sulfur in hydrocarbon fuels combining with oxygen from air during combustion |  |  |  |  |
| Particulates      | Particulates    | Product of incomplete combusion                                                          |  |  |  |  |
| Ozone             | O <sub>3</sub>  | Product of reaction of VOCs and NOx in the presence of heat and sunlight                 |  |  |  |  |

### **Hydrogen Infrastructure**



### Best scalable, economic solution | Delivered liquid hydrogen

H2 Capacity: 15,000 gallons


Liquid temp: -253 deg C

**Liquid Pressure: 5 PSI** 

Gaseous Storage: 60 kg

**Gaseous Fueling Pressure: 350 bar** 

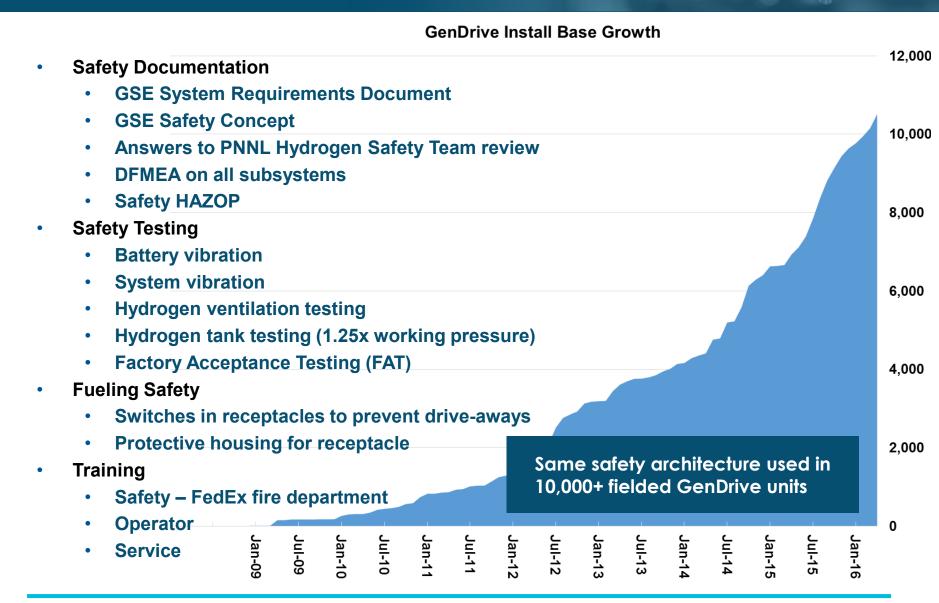
**Dispensing Time: 1 kg/min** 



### Refueling



- Turn handle on hose until arrow is pointing away from vehicle
- Place hose on fuel cell fueling receptacle
- Turn handle 180 deg. clockwise until arrow is pointing at the vehicle
- Fueling hose locks and automatically starts flow to the tank








### **Fuel Cell Safety**





### **H2 Infrastructure Safety**



- GenFuel safety documentation
- GenFuel service manual
- 3<sup>rd</sup> party review of infrastructure
- GenFuel System Components
  - Infrared flame detectors
  - Hydrogen sensors in dispenser
  - E-stops
  - Pressure relief valves
  - Pressure relief routes to vent stack
  - Burst discs on all cryogenic lines
- Automatic notifications FedEx fire dept.,
  Memphis fire dept.

- Safety Testing
  - Factory acceptance test of dispenser –
     1.25x working pressure
  - Line pressure test
- Safety Code Compliance & Permitting
  - Memphis-Shelby County Airport Authority
  - Memphis Fire Service Bureau
  - First responder training



### **All-inclusive Offering**



Approach is make the solution transparent to the customer operations:

- Tractor operation is equal or better than a battery
- Customer does not need to handle hydrogen supply logistics
- Operator experience is the same
- Asset uptime is guaranteed
- Refueling is as easy as fueling with diesel

### GEN**DRIVE**.

A model of efficiency and progress, your GenDrive-powered fleets never stop.

Just like your business.

Seamless solution for economically viable hydrogen fuel cell power

**GENKEY** 

### GENFUEL.

With more than 90% of global hydrogen refuelings going into a Plug Power product – we know hydrogen.

Comprehensive care guarantees uptime and allows you to do what you do best – run your business.

GEN**CARE**.



# **ACCOMPLISHMENTS**

### **Bench Prototype**



### **Systems Modeling**

- Stack Sizing
- Battery Sizing
- Balance of Plant design

#### **Bench Testing**

### **Testing Achievements**

- Automated testing
- Graphic interface
- Liquid-cooled load banks
- Safety sensors/E-stops
- Computer-controlled load profile management














22

### **Alpha Prototype**





### **Alpha Prototype**



- Charlatte CT5E tug, FedEx Express dollies, and 40,000 lbs. of weight
- Endurance testing
- Software/diagnostics testing



### **Environmental / Stress Testing**



Airport application is 24/7 outdoors
Tractors are exposed to the elements

**Testing at Extremes** 

#### **Environmental Chamber Testing**

- Designed, tested, stack and battery freeze protection down to -20 deg F
- Tested heat rejection up to 108 deg F at nominal stack temp





### **Wind Driven Rain Testing**

Rain at 30 mph at 6 different angles





### **Statement of Work / Progress**



### Will update with Gantt chart

| Budget   |  |
|----------|--|
| Period 1 |  |

• Task 1: Definition of Requirements

Task 2: Alpha Prototype

• Task 3: BTT Beta Builds

Task 4: BTT Testing and Certification

Complete

Complete

Complete

**Complete** 

# Budget Period 2

Task 5: Site Preparation

Task 6: Commissioning

Task 7A: 1st Year of Demonstration

Task 8: Assessment after Year 1

Complete

**Complete** 

Complete

**April 2016** 

### Budget Period 3

Task 7B: 2<sup>nd</sup> Year of Demonstration

Task 9: Assessment after Year 2

Apr'16-Apr'17 Apr'17

### **Data Collected During Year 1**



#### Performance during Year 1 fell short of demonstration targets

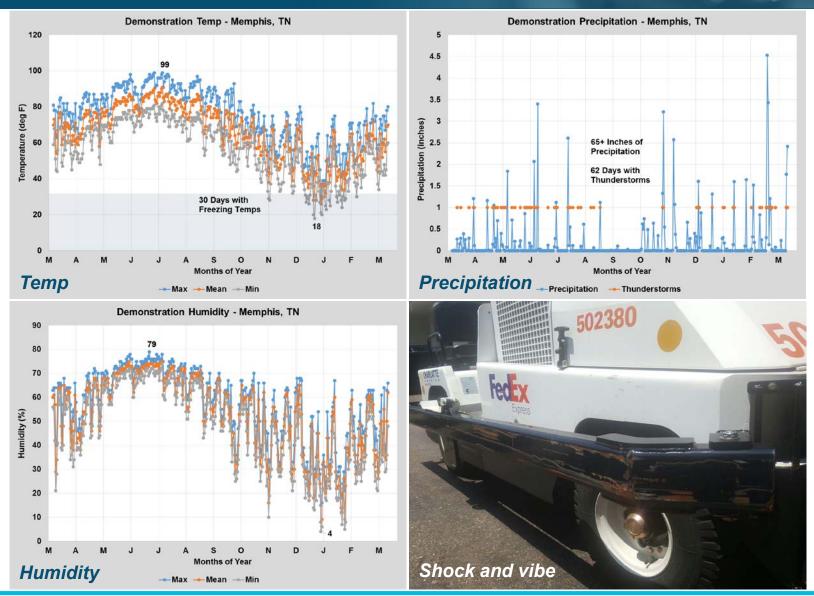
Power: Capable of 5,000 lbs. drawbar capacity

Availability: > 80%Run time: > 1 shift

Reliability (MTBF – Mean Time Between Failures): > 100 hours

Speed rating: 10 mph

Outdoor operation: no non-recoverable issues


Hydrogen Fills: 350 bar

| System  | Time (GMT) | Stack Hours | Stack Starts | System Hours | System Starts | Power  | Total H2 | Tank Fills |
|---------|------------|-------------|--------------|--------------|---------------|--------|----------|------------|
| GD76B01 | 42415.92   | 75.9        | 3514         | 1053.7       | 227           | 746.9  | 107552   | 105        |
| GD76B02 | 42344.8    | 71.2        | 1757         | 1869         | 304           | 643.6  | 80844    | 139        |
| GD76B03 | 42435.67   | 87.4        | 5598         | 2103.6       | 277           | 746    | 72957    | 167        |
| GD76B04 | 42390.74   | 141         | 2879         | 1811.9       | 284           | 594.1  | 127266   | 120        |
| GD76B05 | 42410.28   | 151         | 3646         | 2278.6       | 346           | 1659.7 | 215498   | 153        |
| GD76B06 | 42445.08   | 154.1       | 3861         | 2382.9       | 363           | 1666.9 | 129363   | 154        |
| GD76B07 | 42443.69   | 54.5        | 1660         | 1298.5       | 226           | 497.9  | 66622    | 111        |
| GD76B08 | 42397.73   | 83.1        | 2624         | 1508.5       | 229           | 760    | 74420    | 126        |
| GD76B09 | 42214.83   | 4.5         | 89           | 186.9        | 29            | 49     | 10998    | 22         |
| GD76B10 | 42445.11   | 100         | 3009         | 1604.8       | 393           | 1035.6 | 81782    | 177        |
| GD76B11 | 42390.7    | 93.5        | 2306         | 1326.1       | 348           | 1005.8 | 96403    | 159        |
| GD76B12 | 42241.44   | 34.2        | 1133         | 759.2        | 141           | 374.8  | 53706    | 67         |
| GD76B13 | 42445      | 78.7        | 2624         | 1554.9       | 273           | 754.1  | 66692    | 92         |
| GD76B14 | 42445      | 81.4        | 2560         | 1429.3       | 287           | 762.3  | 78037    | 144        |
| GD76B15 | 42424.83   | 71.1        | 3908         | 1521.6       | 239           | 651.4  | 74328    | 95         |

| Fleet     | Stack Hours | Stack Starts | System Hours | System Starts | Power   | Total H2 | Tank Fills |
|-----------|-------------|--------------|--------------|---------------|---------|----------|------------|
| Units     | hrs         | #            | hrs          | #             | kW-hr   | kg       | #          |
| Parameter | 1281.6      | 41168        | 22689.5      | 3966          | 11948.1 | 1336     | 1831       |

### **Experience Real World Conditions**





### **Learning From Year 1**



Tractor handles application load

Operating outdoor 24/7 is not a problem

Weatherproofing strategy works well

Air filtration protects the system from airport hydrocarbon emissions

Tractor can operate worst route for full shift without needing to refuel

Handful of components that had a drastic effect on reliability

- Problem components have been identified
- Alternates have been identified and tested
- Plan for retrofitting is in place
- Executing plan toward Tractor version 2.0



# **FUTURE WORK**

### **Future Work**



#### **Tractor Version 2.0**



- Replacement of problematic components
  - Same architecture
  - For scaling to 20 kW, some components were different than GenDrive productions for forklift trucks
  - Did not see the same performance; replacements tested for ~ 1 year



- FedEx Express more involved in service
  - FedEx technicians performing PMs
  - Working together on day-to-day fixes
  - Diagnostics



- Evaluation
  - Better integration in FedEx Express resource tracking system
  - Total Cost of Ownership economic validation

One year of demonstration with Tractor Version 2.0



# SUMMARY

### **Summary**



#### **Objectives**

#### FC development

- Cost-competitive
- More energy-efficient
- Reduce consumption of diesel
- Lower carbon emissions
- Decreased energy expenditures
- Validate value proposition

### **Major Contributions by Partners**

- PP: FC system integrator
- Charlatte: Testing with CT5E tug
- PP: Liquid Hydrogen Installation
- FedEx Express: End User Evaluation

### **Fuel Cell Development**

- Alpha prototype fully tested
- Beta prototype fully test
- Demo units received in 2014

#### **H2 Infrastructure**

- Site planning through Q3 2014
- Installation in Q4 2013
- Hydrogen site permitted in March 2015

#### **Demonstration**

- Started April 2015
- Event at FedEx Memphis in April 2015





### **Corporate Headquarters**

968 Albany Shaker Road, Latham, NY 12110

### **West Coast**

15913 E. Euclid Avenue, Spokane, WA 99216

plugpower.com