Hydrogen Compression Application of the Linear Motor Reciprocating Compressor (LMRC)

Buddy Broerman (PI) Jeffery Bennett (Co-PI)

Southwest Research Institute

Norm Shade

ACI Services

June 7, 2016

SOUTHWEST RESEARCH INSTITUTE

Project ID: PD108

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Barriers

Description	Date / Timeframe	Barriers	Targets	
Project Start Date	9/05/14	Low Compressor	>73% Isentropic	
Project End Date	10/04/17	Efficiency	Efficiency*	
Project Duration	3.0 years	Capital Cost	<\$240,000 per compressor**	
Project Progress	1.5 years			
,		O&M Costs	<\$4,800 per year**	

Budget

- Total Project Budget: \$2,284,553
 - Total Cost Share: \$459,160
 - Total Federal Share: \$1,825,393
 - Total DOE Funds Spent*: \$624,690

* As of 4/6/15, includes ACI's March 2016 charges * DOE Project Target

** Targets in the 2012 MYRD&D for 2020

Partners

ACI Services

Relevance

- Project Objectives:
 - Improve isentropic efficiency above 95% by minimizing aerodynamic losses
 - Low speed
 - High valve area ratio
 - Reduce capital costs to half that of conventional reciprocating compressors by minimizing part count
 - Reduce required maintenance by simplifying the compressor design to eliminate common wear items
- BP1: Analyzed and Designed LMRC to be tested in BP2 & BP3
- This Budget Period (Fiscal Year 2016, BP2):
 - Detailed Mechanical Design
 - Estimated Cost Projection for full-scale version
 - Designed Compressor Test Stand for LP Stage

Approach / Milestones

Fiscal Year 2015 – Design All 3 Stages

Task Title	Milestone Description (Go/No-Go Decision Criteria)	% Complete
Stage Sizing	Provide cylinder size for each stage and accompanying calculations.	100
Basic Mechanical Design	Provide FEA results and analysis, basic structural design, and material selection.	100
Linear Motor Design	Provide linear motor design, including required magnet size and configuration of windings.	100
Bearing and Seal Design and Analysis	Provide selected bearing and seal technology and supporting calculations.	100
Valve Selection	Provide the valve type that will be used for the proposed system.	100
Pulsation Control Design	Provide pulsation control design and/or techniques such that the predicted piping system pulsations are at or below the amplitudes specified in the API Standard 618.	100
Cooling System Design	Provide cooler sizes and cylinder cooling specifications	100
Materials and Coatings Selection	Deliver material specifications and manufacturer availability	100
Performance Predictions and Comparison	Deliver performance predications and final CFD calculations	100

Approach / Milestones

Fiscal Year 2016 – Fabricate and Test LP Stage

Task Title	Milestone Description (Go/No-Go Decision Criteria)	% Complete	Planned Quarter
Detailed Mechanical Design	Provide final fabrication drawings of each compressor component and manufacturing/assembly drawings of the components (order long-lead items late Q5 or early Q6)	100	5
Estimate Cost Projection for full- scale version	Deliver cost estimate and calculations for a full-scale version	100	6
Design of Compressor Test Stand for LP Stage	Test Matrix for Bench Scale Testing. Plans for Commissioning, Safety, and Operation of Test Stand. Provide final compression system and test stand design.	90	6
Low Pressure (LP) Stage Compressor Parts Fabrication	Order or fabricate the compressor parts in accordance with the detailed design.	30	7
Low Pressure (LP) Stage Compressor Assembly	Complete assembly of the compressor based on the detailed design.	0	7
Test Stand Construction, Compressor Integration	Manufacture the test stand using the drawings and details created in the previous budget period.	0	7
Commissioning & Startup of Demonstration Model	Verify and report the operability of the compressor and test stand.	0	8
Bench Scale Testing	Report on the completion of the single-stage testing.	0	8

Accomplishments and Progress: Overall Concept & Test Loop

SOUTHWEST RESEARCH INSTITUTE

Accomplishments and Progress: 3D Model: Piston Close-up

- Structural design created & FEA performed for each of the 3 stages
- Materials selection is complete

Accomplishments and Progress: 3D Model: Magnet/Coil Close-up

Accomplishments and Progress:

Dynamic Seal Design/Analysis

A two step analysis was performed:

- FE analysis of seal under range of expected pressure conditions to determine how gap size varies & seal deforms
- 2. Reynold's equation coupled with spring representation of seal to predict the leakage rate

Predicted seal leak rate is acceptable:

Stage	Individual Seal Leak Rate (g/hr)	Individual Seal Leak Rate (% of full flow)
1	1.1	0.01
2	8.0	0.08
3	35	0.35

Ceramic seal and tentatively a DLC poly seal are alternatives

Accomplishments and Progress: Valve Selection/Design

- Market search determined that major manufacturers do not have any products that fit the desired operating conditions
- ACI has experience designing and building replacement and custom compressor valves
- The compressor design has a low throughput & tight space constraints therefore a single poppet valve has been identified as a solution
- Stages 1, 2, and 3 valves are designed and fine-tuned with performance analysis

Accomplishments and Progress: LMRC Cooling System Design

<u>Coil cooling</u>

- Average value of 560A will be traveling through the coils
- Therefore a conjugate heat transfer model (SINDA/FLUINT) was used to determine conditions required for adequate cooling

Accomplishments and Progress: Performance Prediction/Control Scheme

- LMRC predicted efficiency & specific energy:
 - 20% overall 3 stage (and 20% per stage)
 - 9.2 kWh/kg overall (2.8 to 3.5 kWh/kg per stage)
- Could be > 90% by implementing design improvements
 - Move coils to inside of casing.
 - Locate coils as close as possible to the magnets.
 - Increase # of rows of coils (predictions indicate this is <u>only</u> useful after moving coils closer to magnets)
 - Use superconducting coils. (This may require complex additional system to keep the coils super cold.)
 - Further optimization of control scheme.
- ~1.3 kWh/kg is expected with advanced LMRC actuator design & 100 bar inlet pressure (1.6 is 2015 MYRDD target)

Accomplishments and Progress: Full Scale (100 kg/hr) Cost and Life Estimates

- 3 LMRCs in parallel per stage = 9 LMRCs total
- operating at ~930 cpm with ceramic seals

	Conventional Reciprocating Compressor Technologies	LMRC
Seal Life	12-18 months	48 months (ceramic)*
Packing Life	3 years	Infinite (NO PACKING)
Valve Life	1-3 years	4 years
lsentropic Efficiency	2015 goal > 73%, 2020 goal > 80%	80% for all 3 stages in series
O&M Cost	2015 goal < \$10,000/year, 2020 goal < \$4,800	\$3,300 / year
Mnfactr Cost	2015 goal < \$400,000, 2020 goal < \$240,000	\$284,000**

2015 and 2020 goals are from the 2012 MYRD&D plan per the goals of the project contract * Assumes operation time is ~1/4 of a 24 hour day

** Includes inter-stage piping and coolers. Assumes ~100 units built per year. 2007\$ like targets The most understood path to 100 kg/hr was used. Larger may be better, but harder to quantify. Also, overall system efficiency gains (design change) should significantly reduce the cost per LMRC.

Accomplishments and Progress:

Test Loop Design

- After review of OSHA, Occupancy classification letter filed with City of San Antonio, and SwRI requirements, test stand will be located outside building with required electrical supply
- P&ID

Responses to Previous Year Reviewers' Comments

- Cost analysis requested Described in a previous slide
- Flow rate questioned Calculations described in quarterly reports
- Thermal management questioned

 Described in a previous slide
- H₂ inside of magnets chamber? Yes, intentionally
- Dynamic seal leak rate questioned predictions acceptable per detailed analysis
- Control system required to manage power delivery questioned – power controller from electric automotive industry

- DOE Sponsor, Steering
- SwRI Project lead, design, location for testing
- ACI Services Overall project partner, lead for mechanical design, fabricator of some parts
- Thar Energy Project partner, seal and ceramic piston design
- Dexter Magnetic Technologies Neodymium Iron Magnets
- TechniCoil Coils and winding
- Enterprise Power Corp. Power Supply/Controller

All major suppliers/manufacturers are in the USA

- Challenge: Seal life
- **Resolution**: Ceramic seal and tentatively a DLC poly seal are alternatives
- Challenge: Maintaining budget
- **Resolution**: Weekly budget re-evaluations and borrow test equipment to leverage benefit of large SwRI testing community
- Challenge: Full scale production cost target
- Resolution: Investigate further the possibilities of increasing the LMRC size instead of speed & numbers

Proposed Future Work

- 1. Parts Fabrication
- 2. Test Loop Construction
- 3. Commissioning
- 4. Testing
- 5. Data Analysis
- 6. BP3 Fabricate stages 2 and
 3 then test stages 2 and 3 in
 series with stage 1

Summary

- BP1 complete = Stage 1 overall design complete
- Efficiency predictions greater than 95%
- Fabricating and purchasing parts/components
- Currently no technical/commercial off-ramp issues identified

Buddy Broerman, Sr. Research Engr.

EBroerman@swri.org

210-522-2555 Jeffery Bennett, Research Engr.

Jeffrey.Bennett@swri.org 210-522-3761

Questions?

Norm Shade Senior Consultant, and President Emeritus <u>NShade@aciservicesinc.com</u> (740) 435-0240 ext. 504

Technical Backup Slide

Seal Selection Criteria:

1. Face seals with zero gap for all primary & secondary (back-up) seal locations

2. Impermeable & resistant to 100% hydrogen gas

3. Explosive decompression resistant

Approved by T. Anderson; Application Engineering Parker Hannifin O-Ring Division

** outer seal will be V1238-95 Fluorocarbon due to lower pressures

Stage	Max. Internal	Temp. Range (°F)						
	Operating Press. (psig)		Size (in.)	Material	Manufacturer	Durometer (Shore A)		
1	1,125	-15 to 400	3/32	V1238-95 Fluorocarbon	Parker Hannifin	95		
2	4,101	-15 to 400	3/32	V1238-95 Fluorocarbon	Parker Hannifin	95		
3	14,069 (inner seal**)	-15 to 400	1/8	Inconel 718 w/gold plate	Parker Hannifin	NA		

Technical Backup Slide

Materials selected for each of the compressor components, and the significant mechanical and physical properties for each

COMPONENT	MATERIAL	TENSILE	YIELD	ENDURANCE	MAGNETIC	COEFFICIENT OF	YOUNG'S	INFORMATION			
		STRENGTH	STRENGTH	STRENGTH	PROPERTIES	EXPANSION (77-212 °F)	MODULUS	SOURCE			
						(IN / IN / °F)			1 - Carpenter Steel Corp. Data Sneet		
Central Casing	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	2 - AMS 5737P Standard for A-286		
Magnet Spacers	AISI M1010, 1010 hot rolled bar	47 ksi	26 ksi	21 ksi	Magnetic (3290Mu)	6.78 X 10 ⁻⁶	29 X 10 ⁶ psi	3,4,5,15	3 - MatWeb		
	or AISI 1018 hot rolled bar	69 ksi	47 ksi	31 ksi	Magnetic (2540Mu)	6.50 X10 ⁻⁶	29 X 10 ⁶ psi		4 - Ryerson Data Book		
Piston Rod	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	5 - ASM Metals Handbook		
Magnet Retainer	AISI M1010, 1010 hot rolled bar	47 ksi	26 ksi	21 ksi	Magnetic (3290Mu)	6.78 X 10 ⁻⁶	29 X 10 ⁶ psi	3,4,5,15	6 - Special Metals Co. Data Sheet		
	or AISI 1018 hot rolled bar	69 ksi	47 ksi	31 ksi	Magnetic (2540Mu)	6.50 X 10 ⁻⁶	29 X 10 ⁶ psi		7 - "Physical Properties Data Compilations Relev	vant to	
Piston Holder	Incoloy 903 Sol & Age	190 ksi	160 ksi	68 ksi	Magnetic	4.0 x 10 ⁻⁶	21.35 x 10 ⁶ psi	6,14	Energy Storage - V Mechanical Properties Da	ta",	
	or Carpenter CTX-1					4.19 X 10 ⁻⁶		1	HM Ledbetter, NSRDS , Jan. 1982		
Piston Holder Alternate Mat'l	Kovar K-Alloy K94610	75 ksi	40 ksi	NA	Magnetic	3.3 X 10 ⁻⁶	20.0 X 10 ⁶ psi	1,6	8 - Suhm Spring Works Data Book		
	ASTM F-15 Temper A								9 - AMS 4027N Standard (Aluminum Alloy Sheet and Plate)		
Piston	Ceramic (95% Zirconia, 5%Yttria)	36 ksi	NA	NA	NA	5.8 x 10 ⁻⁶	30 x 10 ⁶ psi	16	10 - Alcoa Aluminum Handbook		
Cylinder	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	11 - Iron Castings Handbook (Iron Castings Society)		
Head	AISI 316 Annealed	85 ksi	36 ksi	29 ksi	Non-Magnetic (1.008Mu)	8.89 x 10 ⁻⁶	28 x 10 ⁶ psi	3,18	12 - ASTM A536 Standard (Specifications for Ductile Iron Cast	12 - ASTM A536 Standard (Specifications for Ductile Iron Castings)	
Suction/Discharge									13 - ASTM B152 Standard (Copper Sheet, Strip, and Plate)		
Valves	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	14 - ASTM A193 B7 Standard (Alloy Steel & Stainless Steel Bolting)		
Rider Bands	PEEK (PTFE filled)								15 - Yeadon Handbook of Small Electrical Motors (Soft Magne Materials Properties)	tic	
Thar Seal Rings	Filled PTFE								16 - Thar and https://www.ceramicindustry.com/ext/resourc	es/pdfs/	
Thar Seal Springs	Elgiloy (Cold Drawn & aged)	350/220 ksi	NA	NA	Non-Magnetic	NA	29.5 x 10 ⁶ psi	8	17 - Clark, R. "Magnetic Properties of Materials"		
Seal Retainer Bolting	AISI 316 ASTM F593 Gr 2 Cond.CW	100 ksi	65 ksi	34 ksi	Non-Magnetic (1.008Mu)	8.89 x 10 ⁻⁶	28 x 10 ⁶	22	18 - AZO Materials Web Site		
Valve Springs or	Elgiloy (Cold Drawn & aged) or	350/220 ksi	NA	NA	Non-Magnetic	NA	29.5 x 10 ⁶ psi	8	19 - "A Silicon - Containing, Low-Expansion		
Piston Travel Stop Springs	MP35N (Cold Drawn & aged) or	330/230 ksi	NA	NA	Non-Magnetic	NA	34 x 10 ⁶ psi	8	Alloy with Improved Properties" DE Smi	ith and	
	AISI 316 (Cold Drawn)	245/110 ksi	NA	NA	Non-Magnetic (1.008Mu)	NA	28 x 10 ⁶ psi	8,3	IS Smith Huntington Allows	and	
Valve Poppets	PEEK (Unfilled)	13-15 ksi	NA	NA	NA	26.7 x 10 ⁻⁶	NA	20,21	20 MakeltFrom com Materials Properties		
Valve Nose Gasket	Cooper (OFHC)C10200/C10100	31.9 ksi	10 ksi	NA	Non-Magnetic (0.999Mu)	NA	NA	3,17	20 - Makert From. com, Materials Properties		
Valve Retainer	A-286 Sol & Age(AMS 5737P)	145 ksi	95 ksi	61 ksi	Non-Magnetic (1.007Mu)	9.17 x 10 ⁻⁶	28.8 x 10 ⁶ psi	1,2,7	21 - VICTREX - PEEK Data Sheet		
Cylinder Cooling Jacket	Aluminum 6061-T6	40 ksi	35 ksi	12.4 ksi	Non-Magnetic (1.000 Mu)	13.1 x 10 ⁻⁶	10.0 x 10⁵ psi	9,10,17	22 - ASTM F593 Standard Gr.2 Cond. CW		
Coil Housing	Ferritic Ductile Iron Casting								(Specification for Stainless Steel Bolts)		
	ASTM A536 Gr. 60-40-18	60 ksi	40 ksi	27 ksi	Magnetic (1500Mu)	6.5 x 10 ⁻⁶	24.5 x 10 [€] psi	11,12			
External Bolting	Alloy Steel A193-B7	125 ksi	105 ksi	61.2 ksi	Magnetic	6.78 X 10 ⁻⁶	29.7 x 10 ⁶ psi	14,3			
Bolting for Piston	17-4PH H1150-D or	125 ksi	105 ksi	62.5 ksi	Magnetic	6.6 X 10 ⁻⁶	28.5 X 10 ⁶ psi	1,3			
Holder & Magnet Retainer	17-4PH H1150-M	115 ksi	75 ksi	57.5 ksi	Magnetic	6.6 X 10 ⁻⁶	28.5 X 10 ⁶ psi	1,3			

Technical Backup Slide

Control panel for developing control schemes while simulating LMRC motion and predicting performance (+ many other system characteristics)

- It was determined through pin-on-disk testing that the coefficient of friction (COF) for sapphire on PEEK is 0.15
- Due to the higher than expected COF, two other seal options are planned for testing
 - Poly seal with DLC
 - Sapphire or ceramic seal (~0.0001"-0.0005" clearance)

