Monolithic Piston-Type Reactor for Hydrogen Production through Rapid Swing of Reforming/Combustion Reactions

Project ID #PD111

PI: Wei Liu Project team:

Wei Liu, Shari Li, Erika Cutsforth, Ken Rappe, Richard Zheng/PNNL

Yong Wang/Washington State University

Bang Xu/Dason Technology

Chris Bertole/Cormetech

6/8/2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start November 2014
- End October 2017
- 60 % Complete

Budget

- □ Total Project Budget \$2,755K
- □ Total Recipient Share \$555K
- □ Total Federal Share \$2,200K
- Total DOE funds spent* \$1200K
 *as of 4/5/2016

Barriers

- □ MYRDD Tech. Barriers addressed:
 - A: Plant Capital Costs and Efficiency (unit scale of economy)
 - B: Operations and Maintenance (O&M)

Target:

Production cost of distr. H₂ <\$2/kg H₂

Partners

- Cormetech
 - Monolith support
 - Catalyst/sorbent commercialization
- □ Washington State University
 - Reforming catalysis and kinetics
- Dason Technology
 - Integrated test apparatus
 - Process development

Relevance Facilitating DOE's H₂ *Production* Cost Goal <\$2/gge

Project Objective

Advance H₂ production technologies from bio-liquids such as bio-oil

1. Reduce capital costs of plant

- Minimizing unit operations (e.g., no furnace requirements)
- Smaller PSA, smaller (or possible elimination of) WGS, no air separation
- Process simplification minimizes BOP components

2. Increase energy conversion efficiency

- In situ heat exchange between reaction & regeneration to minimizes heat loss
- In situ CO_2 capture, push thermodynamics of reforming to higher conversion
- 80% energy conversion efficiency achievable (versus 71.4% for methane reforming, 2011 status)

3. Increase operating flexibility and durability

- Reduced O&M (operations & maintenance) requirements
- Directly addresses coking & catalyst deactivation
- Modular, compact reactors to make unit turn-around easier

Relevance - H2A analysis

Impacts of production technology innovations on H₂ cost

Approach – our process innovation

Reduce unit process steps and intensify heat/mass transfer

Typical commercial processes

Present process:

Conduct rapid reaction/regeneration swing operation

Pacific Northwest

• Capture CO₂ during reforming reaction

Approach - rapid swing reactor operation of integrated reactor

Approach – new composite sorbent for CO₂ capture under steam-reforming conditions

Performance characteristics: adequate working capacity, rapid kinetics, stability

Features of present composite sorbent designs:

- > CaO (active metal oxide) stabilized by MgO (structural stabilizer) during sorption & de-sorption
- Eutectic carbonate (i.e., promoter) used to catalyze CO₂ sorption and subsequent carbonate decomposition
- > Stability results from reversible transformation between the active and carbonated states

Elemental distribution in Dolomite-derived composite sorbent

PACIFIC INOTTINVEST NATIONAL LABORATORY

Approach – nano-composite catalyst for steam reforming reactions of bio-liquids

Performance characteristics:

- Catalyst can be rejuvenated by calcination
- Catalyst is resistant to coking and fouling

Features of present nano-composite catalysts:

- Synergistic effects result from combination of different catalytic materials
- Redox sites are for reforming reactions
- Basic and acidic sites are for breakdown of large bio-oil molecules (or polymers)

Liu. Chem. Eng. Sci. 62(2007)3502-3512.

Composite catalyst made as powder

Composite catalyst deposited on and in monolith channel walls

Approach - milestones addressing three critical challenges

Milestone 1 (FY15) – material innovation:

- Composite catalyst demonstrated for steam reforming reactions with simulated bio-oil:
 - Stability in repeated reforming/regeneration cycles
 - H₂ productivity >0.6 [kg-H₂/h]/kg of catalyst
- ✓ Composite CO₂ sorbent demonstrated with CO₂/H₂/H₂O gas mixtures
 - Stability in repeated sorption/regeneration cycles
 - CO₂ capture productivity >0.2 [kg-CO₂/h]/kg of sorbent

Milestone 2 (FY16) – monolithic reactor innovation:

- ✓ Monolith catalysts demonstrated for steam reforming of actual bio-oil:
 - Stability in repeated reforming/regeneration cycles
 - H₂ productivity >0.6 [kg-H₂/h]/kg of catalyst
- Demonstration of bio-oil flow distribution and integration of reforming reactions with CO₂ capture next

Milestone 3 (FY17) – process innovation:

- > Development of an integrated reactor system with technical readiness level \geq 4
- Demonstration of ≥ 10 wt% H₂ yield, $\geq 90\%$ H₂ in reactor, high purity H₂ after PSA

Responses to Previous Year Reviewers' Comments

	Critical issue/challenge	Response			
1	 Consider devoting more resources to address the technical challenges associated with the catalyst, especially poison and coking tolerance when running on bio-oil, and translation of laboratory discovery to successful monolith. Clearly, catalyst performance has high project showstopper potential Catalyst poisons in bio-oil have not been addressed. 	 The project focus was shifted toward catalyst development and reaction tests for bio-oil reforming Catalyst particle bed tests at WSU Monolith catalyst preparation and intrinsic performance studies at PNNL Setup of reactor testing system at high flow rates and evaluation of flow distributors at Dason Tech Supply of a large number of monolith supports by CormeTech Both model compounds and pure bio-oil are used for reaction tests 			
2	 Would also like to see high priority given to assessing the relative kinetics of H₂ production, CO₂ diffusion into sorbent, and mass transfer through the monolith 	 Composite sorbents have been tested in packed bed in particle forms under various conditions, in parallel to TGA screening tests Some kinetics addressed in this talk; some diffusion/mass transfer effects to be addressed later 			
3	 Tackling very significant technical challenges on all three fronts simultaneously. Overly optimistic timeline. 	 We are trying our best to solve the most significant problems to develop a step-out H₂ production technology, and will adjust the plan if necessary 			

Pacific Northwest

NATIONAL LABORATORY

Rapid kinetics and >11 cyclic stability of the composite CO₂ sorbent

0.00

Stability testing of the packed sorbent particle bed under one set of conditions

Sorption: 500°C, 1 bar, GHSV=11,0001/h, H_2O /syngas ($H_2/CO_2=2/1$) =1:1

Regeneration: 700°C, 1 bar, air

90% of the sorption capacity is reached in breakthrough time of 1.4min – rapid sorption kinetics

6

8 9

CYCLE

NATIONAL LABORATORY

10 11 12 13 14 15 16 17 18

Three-week stability of the composite sorbent tested under various conditions

Parametric tests in different days

Cyclic stability of K-NiCu-Ce(Mg)-Al-O composite reforming catalyst

Test of the catalyst particle-packed bed:

Simulated bio-oil: Ethanol:Acetone:Acetic Acid: Phenol =1:1:1:1

Reforming conditions: 500 °C, steam/carbon= 3.3, SV = 10,000 h⁻¹

Regeneration conditions: 700 °C, 40 sccm of air, TOS = 8 min/cycle

The composite catalyst is more stable in monolith for reforming 100% bio-oil

Catalyst in packed particle bed configuration:

Reforming: 600°C, WHSV_{cat} = 82 h⁻¹ steam/oil (S/O) = 3 Catalyst loaded into walls of TiO₂ monolith

Reforming: 550°C, S/O=1

 $WHSV_{cat} = 237 h^{-1}, LHSV_{c} = 56 h^{-1}$

Regeneration: 700 °C, air,

Active composite catalyst in the monolith channel wall exposed to feed oil

$$LHSV_{C} = \frac{F_{oil}(cc/h)}{V_{C}(cc)}$$

Volume of monolith reaction channels exposed to feed oil

Regeneration: 700 °C, air

 $WHSV_{cat} = \frac{G_{oil}(g/h)}{W_{oil}(g)}$

Dramatic enhancement of the monolith reactor volume-based productivity

H₂ productivity is enhanced about 10X with the activated TiO₂ monolithsupported K-NiCu-Ce(Mg)-Al-O catalyst Produced H₂

Syngas composition and H₂ productivity of the same monolith catalyst module:

Before activation

After activation

Pacific Northwest

Cat #60193-41-3, 18.5cm long; Reforming: S/O=1,LHSV_c= 32 h⁻¹; Regeneration: 700 °C, air

Monolith reactor enables usage of low steam/oil ratio in the reactor feed

- The reforming can be effectively conducted at low feed steam/oil (S/O) ratio
- Syngas productivity increases with LHSV, while H₂ molar fraction in the syngas slightly decreases

Reforming: 640°C, S/O=1 Regeneration: 700 °C, air Reforming: 640°C, LHSV_c= 32 h⁻¹ Regeneration: 700 °C, air,

Pacific Northwest

Cat #60193-41-6, 18.5cm long

Accomplishment & Progress Promising steam/bio-oil flow distributor identified

 Dason's integrated reactor skid is commissioned for tests at feed rates 10-100 times higher than PNNL's reactor

- The system was debugged with ethanol reforming over a commercial steam-reforming catalyst
- PNNL's monolithic catalyst is more active at ~100°C lower temperature versus commercial catalyst

Feed nozzle positioned above the monolith at designed distance:

Bio-oil spread evenly over cross-sectional area of the monolith

Feed nozzle positioned too close to the monolith:

Bio-oil spread mostly into middle of the monolith crosssection

Collaboration and technology transfer

PNNL filed patent application on the new materials & reactor concepts

Pacific Northwest

Remaining barriers and challenges, and proposed future work

Milestone	Critical issue/challenge	Proposed approach	
9/30/2016: Integration of reforming reactions with CO ₂ capture in one reactor vessel	 Synchronization of reforming and CO₂ capture processes Preparation and testing of the composite CO₂ sorbent in larger quantities Negative chemical interactions between the sorbent and reforming 	 Systematic reforming tests with the bio-oil flow distributor to identify robust operation windows Improving the sorbent formulations to tolerate large temperature variations Understanding impacts of sorbents on reforming reactions Evaluation of different catalyst/sorbent packing structures in the reactor tube 	
9/30/2017: Demonstration of an integrated reactor system for complete bio-oil conversion and production of 99% pure H ₂	 Recycling of un- converted bio-oil and condensed water Long-term, continuous swing reactor operation Good material balances 	 Making and delivering monolithic reforming catalysts and CO₂ sorbents of consistent quality Upgrading of operation and control of the testing units Chemical composition analysis of feed, liquid product, and gas product Systematic process tests Correlation of catalyst and sorbent properties with process performances 	

Summary

- ✓ Bio-liquids (e.g., ethanol, bio-oil) coke strongly on steam reforming catalysts
- The K-NiCu-Ce(D)-Al-O metal oxide nano-composite is an active, new catalyst system for steam reforming of bio-liquids with periodic regeneration by combustion
- TiO₂ monoliths (CormeTech) loaded with the composite catalyst show exceptionally higher activity after certain activation than the particle bed:
 - New active catalytic states are formed in the monolith channel walls
 - Bio-oil is more evenly spread on the channel wall; high steam/oil ratio not necessary
- The monolith swing reactor is promising to solve the catalyst deactivation associated with steam reforming of bio-liquids
 - → To be further developed with higher (10-100-fold) oil feed rates to magnify hydrodynamics and heat transfer effects.
- Dolomite + eutectic carbonate composite is developed as a new sorbent system for capturing CO₂ in CO₂/H₂/H₂O mixtures
 - Sorption over 400 to 700°C, regeneration above 700 °C
 - Fast CO₂ sorption (carbonation) kinetics, comparable to CO₂ adsorption
- Both preparation and reactor loading of the sorbent need to be scaled up with larger quantities. Its chemical interactions with the reforming catalyst needs to be addressed for in situ CO₂ capture applications

Technical Back-Up slides (optional)

Bio-oil steam reforming tests of monolith catalysts

Gas production profiles during reforming and regeneration

Cat #60193-41-6

Reforming: feed steam/oil = 1, LHSVc = $32 h^{-1}$ Regeneration: 200 sccm air

Injection of steam/oil into two channels

As-

received

bio-oil

Liquid condensed from reactor effluent

Five TiO₂ monoliths impregnated with different solutions

K-NiCu-Ce(Mg)-Al-O nano-composite oxide

		Loading	Crystal phases in spent catalyst			
Cat #	Preparation condition	wt %	Major	Minor	Minor	
A	1-time impregnation	12.5	TiO ₂	rutile	CeO ₂	K₂O
В	2-time impregnation	19.2	TiO ₂		CeO ₂	
с	2-time impregnation with additives	10.8	TiO ₂		small CeO ₂	
D	Replaced Mg with La	13.0	TiO ₂		_	
E	Replaced Mg with La and removed Al	12.1	TiO ₂	rutile	CeO ₂	NiO

Impacts of composite catalyst compositions on biooil reforming performances

Five identical TiO₂ monoliths impregnated with different solutions:

- Syngas productivity increases with temperature for all 5 catalysts
- H₂ productivity increases with temperature except for Cat C
- CH₄ content in syngas increases with temperature for all the catalysts
- Coke deposition slightly increases with temperature

Reforming: S/O=1, LHSVc= ca. 32 h⁻¹

Regeneration: 700 °C, air

Improvement to the composite CO₂ sorbent using eutectic carbonates

TGA sorption/regeneration cyclic tests:

Sorption: 550°C in CO₂

Regeneration: 700°C in N₂

Dolomite added with eutectic carbonate of different melting point (°C):

Purple = 397, Red= 498, Green = 550, Yellow = 600

The eutectic carbonate of melting point slightly lower than the sorption temperature gives the best performance.

Loading of the CO₂ sorbent powder into monolithic channels

Alternate channels of the monolith are filled with the sorbent fine

