

This presentation does not contain any proprietary, confidential, or otherwise restricted information

High Performance Platinum Group Metal Free Membrane Electrode Assemblies Through Control of Interfacial Processes

P. I./Presenter: Kathy Ayers Organization: Proton OnSite Date: June 8th, 2016

Project ID: PD123

Overview Timeline

- Project Start: 1 May 2015
- Project End: 30 April 2017
- Percent complete: 50%

Budget

- Total project funding
 - DOE share: \$1,000,000
 - Cost-share: \$250,000
- Total DOE funds spent*
 - DOE share: \$474,984

*as of 3/31/16

NEW MEXICO

Page 2

Barriers

 Barriers addressed F: Capital Cost

Table 3.1.4 Technical Targets: Distributed Forecourt Water Electrolysis Hydrogen Protoduction ^{a, b, c}						
Characteristics	Units	2011 Status	2015 Target	2020 Target		
Hydrogen Levelized Cost ^d (Production Only)	\$/kg	4.2 ^d	3.9 ^d	2.3 ^d		
Electrolyzer System Capital Cost	\$/kg \$/kW	0.70 430 ^{e, f}	0.50 300 ^f	0.50 300 ^f		
System Energy Efficiency ^g	%(LHV)	67	72	75		
	kWh/kg	50	46	44		
Stack Energy Efficiency ^h	% (LHV)	74	76	77		
2	kWh/kg	45	44	43		

Partners

- Northeastern University
- Pennsylvania State University
- **University of New Mexico**

Relevance: Hydrogen Value Proposition

Page 3

Relevance: Problem to be Addressed

- Electrolyzer capital cost and \$/kg H₂
- AEM based electrolysis enables the elimination of most expensive cell materials: PGM and valve metals

Page 4

PENNSTATE.

Relevance: Specific Barriers Addressed

Develop ex-situ and in-situ stability comparisons to connect ex-situ lab evaluation and in-situ device results

Increase stability of PPO membranes through the use of cation spacers to decrease benzyl attack

Optimize water management through tuning of GDL porosities and hydrophobic/hydrophilic properties

Advance fundamental understanding of non-PGM active sites and reaction mechanisms to improve stability

Page 5

Approach: AEM Electrolysis

- Catalyst:
 - Goal: Show feasibility of non-PGM catalysts in AEM
 - HER overvoltage of less than 200 mV at 20 mA/cm²
 - OER with overvoltage of less than 320 mV at 20 mA/cm²
- Membrane and ionomer:
 - Goal: Enhance membrane and ionomer stability to achieve long term cell operation
 - Control water uptake and conductivity for improved mechanical stability

Cell and System Design:

- Goal: Demonstrate 500 hr of stable operation at <2V for fully integrated AEM cell at 500 mA/cm²
 - Optimize water management and balance of plant configuration

Approach Task Breakdown

- Task 1.0 Synthesis of HER & OER Catalysts
 - Subtask 1.1 Catalyst Component Identification
 - Subtask 1.2 Refinement of Composition & Micro-structure
 - Subtask 1.3 Synthesis of Single Oxides
 - Subtask 1.4 Synthesis of Spinel Materials
 - Subtask 1.5 Scale-up of SSM Materials
- Task 2.0 Membrane/Ionomer Synthesis
 - Subtask 2.1 Scale-up Benzyl Side Chain AEMs
 - Subtask 2.2 Synthesis Optimization & Scale-up

Approach Task Breakdown

- Task 3.0 Characterization of Catalyst Materials
 - Subtask 3.1 3-Electrode Testing
 - Subtask 3.2 2-Electrode Testing
 - Subtask 3.3 Structural Characterization
- Task 4.0 Characterization of Interfacial Effects
- Task 5.0 Cell Engineering
- Task 6.0 Prototype System & Demonstration

Approach: Catalyst Development

- Support synthesis through SSM method
- HER catalysts based on Ni-TM (TM=Cr, Mo) supported on Raney-Ni, C or SSM
- OER catalysts based on Ni-TM₁-TM₂ (TM=Fe, Mo, Co) oxides on Raney-PANI, or SSM

Page 9

- Activity and stability optimization through tuning of composition, support of non-PGM's catalysts
- Screening by 3-electrode solution testing by RDE and flooded gas diffusion electrodes
- Focus on reproducibility and uniformity of synthesized materials

PENNSTATE.

Approach: Membrane and Ionomer

- PPO is a highly stable backbone for AEMs
 - Absence of electron withdrawing groups in the main chain
 - Cation spacer polymers have 5-10X greater hydroxide stability than side chain benzyl-linked cation
 - Highly manufacturable and tunable for conductivity, water uptake, mechanical stability

Side chain benzyl dimethylalkyl ammonium

Cation spacer dimethyldialkyl ammonium

Approach: MEA testing

 Gas diffusion electrodes will be fabricated with Penn State ionomers and NEU/UNM catalysts
 Water management through cell engineering

Approach: AEM Stack Design

- Stack design will incorporate costreduced materials compatible with AEM operation.
- Tuning of gas diffusion layers will be a primary objective for stable operation of the AEM-WE

Varying treatment for water management

Page 12

Approach: AEM System Design

- Water management within the system will be explored.
 - Durability and performance, as a function of water delivery.
 - Cathode versus anode feed of DI H_2O
- System will serve as test station for stack durability tests

Technical Accomplishments - Milestones

Milestone Summary Table				
Recipient Name:	Proton OnSite			
Project Title:	Project Title: High Performance Platinum Group Metal Free Membrane Electrode Assemblies Through Control of Interfacial Processes			
Task # /Title	Milestone/ Go –No Go Description	Q		
1: Catalyst Synthesis	NUCRET: Synthesize baseline Ni-Mo and Ni-Fe materials	Q1		
1: Catalyst Synthesis	UNM: achieve single oxide material with equivalent half cell properties to IrO2	Q2		
1: Catalyst Synthesis	NUCRET: Identify 3 promising Ni/MeOx cathodes; Identify 3 promising "MMO" (Ni-Fe-Mo/Co) anodes	Q3		
3: Catalyst Characterization	NUCRET: Demonstrate operation at 500 mA/cm2, <2 V with liquid fuel	Q4		
4: Electrode Fabrication and Characterization	Proton: Integrate non-PGM catalyst with novel AEM materials	Q5		
2: Membrane Synthesis and Characterization	PSU : Delivery of materials with PPO benzyl side chain architecture for electrode optimization and cell testing.	Q6		
1: Catalyst Synthesis	UNM: down select transition metal, precursor type; deliver material to Proton OnSite	Q7		
6: Prototype Demonstration	Proton: Demonstrate stable operation at 500 mA/cm2, <2 V with 2-electrode configuration	Q8		

Page 14

Technical Accomplishments: OER Catalyst Synthesis - Milestone #1

- Synthesized 0.5-1g Ni-Mo & Ni-Fe composite "MMO" materials
- Confirmed structure & composition via XRD & SEM

SEM images of Ni-Fe/Raney-Ni-PANI

Page 15

Technical Accomplishments: OER Catalyst Synthesis - Milestone #1

- Synthesis studies indicate annealing conditions affect OER activity in RDE testing in 0.1M KOH
- XRD confirms composition per milestone

Left) CV data showing HT-effects of Ni-Fe-Co on Raney-Ni support Right) XRD data from Ni-Fe-Co/PANI-Raney

Page 16

Technical Accomplishments: Support/Catalyst Synthesis - Milestone #2

BET analysis confirmed milestone target of >20 m²/g

OER Catalyst	Conductivity [S/cm]	Onset Potential [V] vs RHE
NiO	0.00200	1.53
I-22 NiO SSM	0.00308	1.52
I-28 NiCoO₃ SSM	0.389	1.54
NiMoCu-II	4.47	1.51
IrOx reference	0.0102	1.43

Technical Accomplishments: OER Catalyst Synthesis - Milestone #3

Page 18

Technical Accomplishments: HER Catalyst Synthesis - Milestone #3

Page 19

Technical Accomplishments: OER MEA testing

- Down-selection of OER catalysts
 - Based on 3-electrode testing and catalyst materials performance: BET surface area, conductivity, OER onset potentials
- Down-selected in milestone NiMoCo - unsupported NiFeCo – unsupported NiFe Raney PANI

PENNSTATE

Technical Accomplishments: HER MEA testing

- Down-selection of HER catalysts
 - Based on 3-electrode testing and catalyst materials performance: BET surface area, conductivity, HER onset potentials

Down-selected in milestone

Ni-Mo 60% Ni-Cr/Ketjen 600 20% Ni/50% Vox/C **Operationally Tested In-Cell**

Page 21

Technical Accomplishments Short Term Testing: Milestone #4

NEW MEXICO

Technical Accomplishments: Membrane Synthesis

THE UNIVERSITY of NEW MEXICO

Page 23

Technical Accomplishments: PPO membrane MEA testing

PENN<u>State.</u>

Sample Gen 2 w/K₂CO₃ remained intact after disassembly

PENNSTATE.

Technical Accomplishments: Non-PGM and PPO MEA Testing

Carbonate added to system to stabilize MEA degradation

PENNSTATE.

Technical Accomplishments: CCM Manufacture

- Direct deposition process for CCM fabrication initiated
 - Maintains low temperature process
 - No mechanical pressure for attachment
- Anode electrode feasibility
 demonstrated

Cross-section of intact layer
 shown at right

NEW MEXICO

Technical Accomplishments: CCM Manufacture

PGM HER | commercial membrane | Direct Deposition PGM OER CCM 25 cm^2 , 500 mA/cm², 50 °C

- Operation conducted at increased current density to test adhesion
- Stability improving at end of test and electrode intact after teardown

PENNSTATE.

Technical Accomplishments: Water Transport and System Concept

Page 28

Collaborators

- Penn State (Subcontractor)
 - Synthesis and tuning of ionomer and membrane
 - Scale up batch sizes
- University of New Mexico (Subcontractor)
 - Sacrificial supports for pure oxides and spinel materials for OER
 - Optimize sacrificial support (SiO₂ vs MgO), metal precursor type, heat treatment parameters, and sacrificial support removal conditions
- Northeastern University (Subcontractor)
 - HER catalysts and effects of various post-synthesis heat-treatments.
 - Electrodeposited ternary Ni-Fe-X (X=Co,Mo,etc.) on GDEs
 - Wet synthesis of composite Ni-Fe-X materials with carbon nanotubes (CNTs) or other conductive nano-polymers (CNPs)

Future Work

- Catalyst
 - Use of sacrificial supports to synthesize un-supported mixed oxides or perovskite materials for OER
 - Demonstrate operation of non-PGM HER & OER catalysts at 500 mA/cm², < 2 V
 - Investigate catalyst ionomer/solution interfaces
- Membrane and lonomer
 - Synthesize membrane materials with PPO benzyl side chain architecture and OH- conductivity > 25 mS/cm
 - Incorporate mechanical reinforcement to improve durability
 - Investigate water transport rates vs. pressure
- Cell and System Design
 - Tune hydrophobicity, porosity, and geometry of GDLs
 - Investigate alternate modes of water feed
 - Demonstrate 500 hrs of operation at 500 mA/cm², <2 V

Summary

- **Relevance**: The goal of this effort is to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) completely free of PGMs
- Approach:
 - Optimization of electrocatalyst conductivity, dispersion, and utilization in the active MEA with focus on the understanding of catalyst-membrane-ionomer interfaces and how they differ from liquid electrolyte
 - Water management through GDL modification and system configuration
 - AEM material stability by incorporating of side chains, cross-linking, and mechanical reinforcement
 - Utilize cheaper materials of construction for cell stack and system design to further reduce total \$/kg H₂
- Collaborations:
 - Pennsylvania State University: Development of a PPO based AEM and ionomer that is stable in alkaline operation and scalable to a batch process
 - University of New Mexico: Apply SSM (sacrificial support method) in the synthesis of catalyst materials with high surface area 3D structures
 - Northeastern University: Develop non-PGM HER and OER catalysts. Conduct characterization of interface between non-PGM catalysts and ionomer to study structure-activity relationships
- Proposed Future Work:
 - Continue synthesis and scale-up of highly active, PGM free HER and OER catalysts
 - Synthesize PPO based AEMs with added reinforcement and cross-linking for improved stability
 - Optimize cathode and anode GDEs to improve water management for operational stability
 - Evaluate operational mode with electrolysis system for stability (cathode vs anode feed)
 - Integrate all materials and operating modes into optimal cell and system configuration

