Novel Hybrid Microbial Electrochemical System for Efficient Hydrogen Generation from Biomass

Project ID: PD129 Hong Liu Oregon State University June 7, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 02/01/16
- Project End Date: 01/31/19*
- * Project continuation and direction determined annually by DOE

Budget

- Total Project Budget: \$1,670K
 - Total Recipient Share: \$167K
 - Total Federal Share: \$1,500K

Barriers

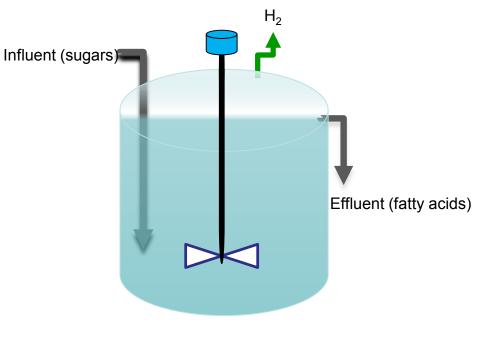
- Low hydrogen molar yield (AX)
- High electrode (cathode) cost (AAA)
- Low hydrogen production rate (AAB)

Partners

- Oregon State University: project lead; costshare funding
- **PNNL**: co-project lead
- Oregon Nanoscience & Microtechnologies
 Institute: cost-share funding

Project Objective:

Develop a microbial electrochemical system for H_2 production from low-cost feedstock (lignocellulosic biomass and wastewater) at a cost less than \$2/kg H_2 .


Approach/Strategy to Achieving DOE's target:

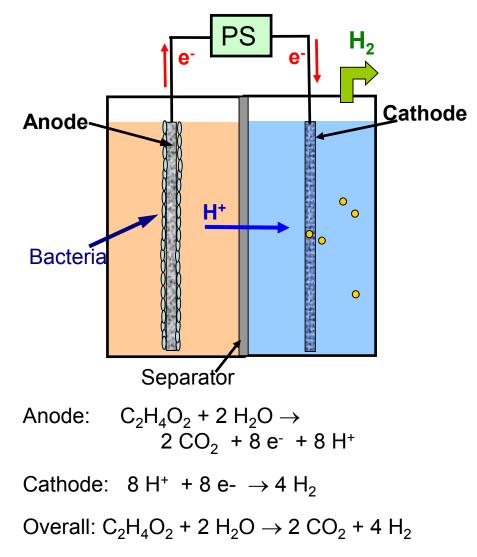
Characteristics	Units	Current Status	Project Target	Commercial Target
Feedstock		glucose	hydrolysate/wastewater	hydrolysate/wastewater
Feedstock cost contribution	\$/kg H ₂	8.2	2.0/0	1.2/0
Capital cost contribution	\$/kg H ₂	3.0	0.4/0.7	0.3/0.6
Electricity cost contribution	\$/kg H ₂	0.4	0.2	0.2
Other operational cost	\$/kg H ₂	0.3	0.3/0.6	0.3/0.6
Total cost	\$/kg H ₂	11.9	2.9/1.6	2.0/1.5
Credits	\$/kg H ₂	0	0/-10	0/-10
Final cost	\$/kg H ₂	11.9	2.9/-8.4	2.0/-8.5

* Using wastewater as feedstock can generate a credit as much as -\$1/kg glucose equivalent, or -\$10/kg H₂.

Dark fermentative H₂ production

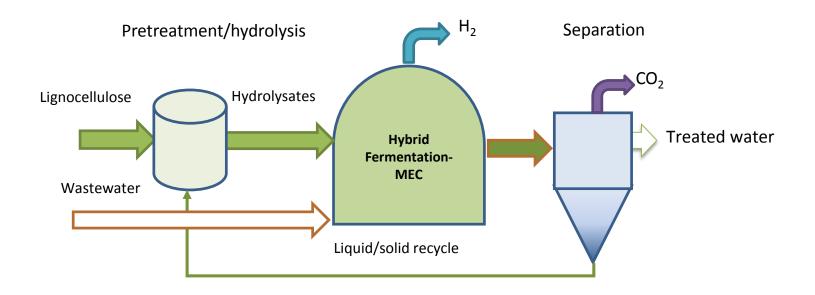
- Advantages
 - High hydrogen rate
 - Low energy input
- Challenge
 - low hydrogen yield (Fermentation Barrier):
 - Maximum 4 mol H₂/mol glucose
 - Most H₂ stored in liquid fermentation end products

 $C_6H_{12}O_6 + 2H_2O \rightarrow 4H_2 + 2CO_2 + 2C_2H_4O_2$

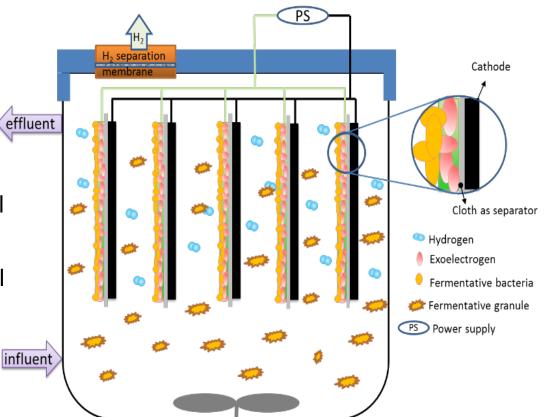

Microbial electrolytic H₂ production

Advantages:

- Overcoming the "Fermentation Barrier"
- High H₂ yield


Challenges

- Incapable/inefficient in directly utilizing biomass or biomass components
- Low H₂ production rate/high energy input
- High costs for electrode and separator materials


Overall approach of this project:

Develop a hybrid fermentation and microbial electrolysis cell (F-MEC) system that can be integrated with lignocellulose pretreatment/hydrolysis or wastewater treatment processes for H_2 production.

Uniqueness of the approach:

- Use low-cost feedstock
- Combine strengths of dark fermentation and MEC processes
- Reduce capital/operational costs with low-cost and low-overpotential cathode
- Reduce operational cost with novel reactor design and operational conditions
- Apply cost performance model throughout the project to prioritize development

Fermentation: $C_6H_{12}O_6 + 2H_2O \rightarrow 4H_2 + 2CO_2 + 2C_2H_4O_2$ **MEC Anode:** $2C_2H_4O_2 + 4H_2O \rightarrow 4CO_2 + 16e^- + 16H^+$ **MEC Cathode:** $16H^+ + 16e^- \rightarrow 8H_2$

Budget period 1 (FY 2016-2017)

Fermentation optimizationMEC cathode development

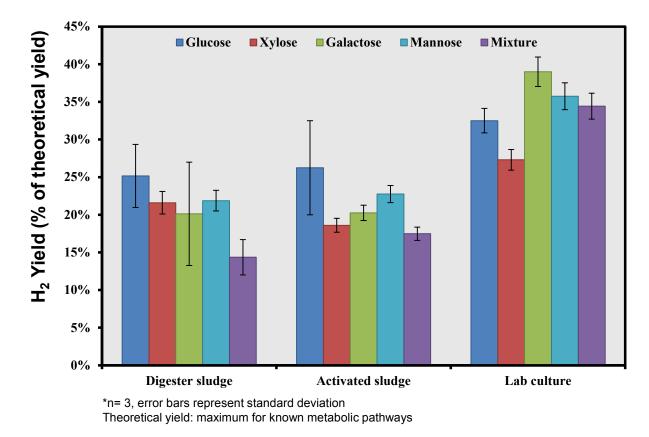
Budget period 2 (FY 2017-2018)

MEC process optimizationHybrid system design/fabrication

Budget period 3. (FY 2018-2019)

- •Hybrid system evaluation
- •Cost performance model

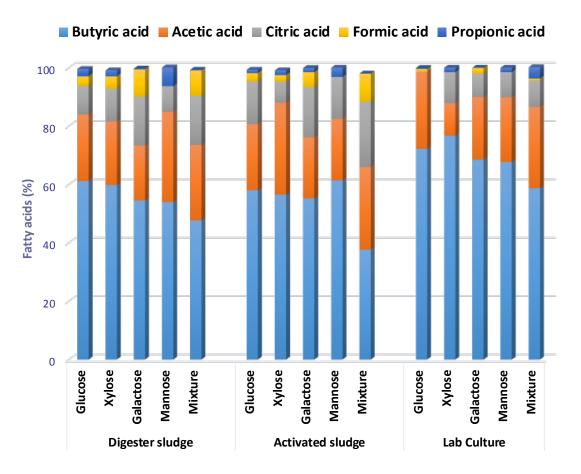
This reporting period (Feb 2016 – April 2016)


- Identify a fermentative bacterial culture capable of producing H₂ from all major sugars in lignocellulose hydrolysates and wastewater
 - Mixed culture
 - Higher robustness and adaptability
 - Easier to grow at large scales
 - More economical to build and operate
 - Relatively simple to manage
 - Suited for using wastewater and complex biomass hydrolysates

- Batch reactors

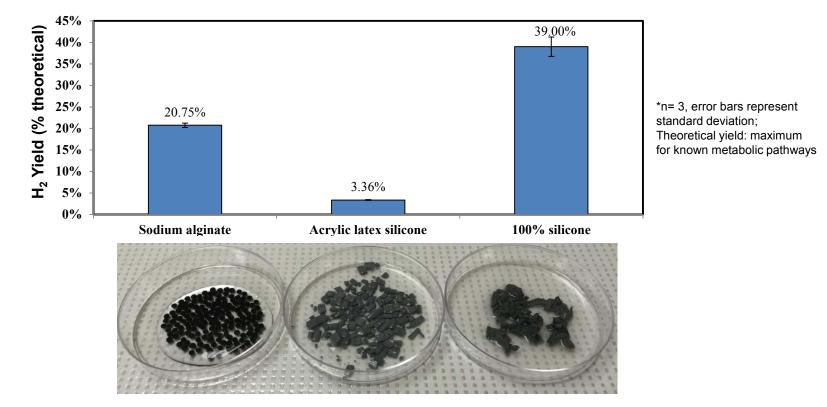
- Types of bacterial culture
- Types of sugars
- Biogas
- Liquid products
- Developing MEC cathode catalysts
- Cost performance modeling

Identification of a bacterial culture capable of producing hydrogen from all major sugars


Summary: All three tested cultures are capable of producing hydrogen from all tested sugars. The lab culture enriched with glucose demonstrated the highest hydrogen yield.

Liquid fermentation products

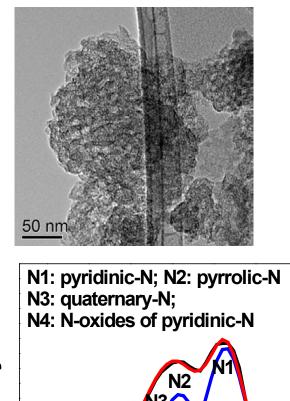
- Provide information for MEC process design
 - Types of carbon source for exoelectrogens
 - Relative production rate



Butyrate and acetate are the dominant fermentation liquid products for all sugars and all three cultures.

Immobilization of hydrogen-producing culture

- To increase bacterial cell density in continuous-flow reactors
- To increase volumetric hydrogen production rate


Summary: Immobilization of the lab culture using silicone demonstrates the highest hydrogen yield.

Cathode catalysts

- Synthesized nitrogen doped porous carbon (N-C), surface area tunable between 1000-2500 m²/g. Metal catalysts will be applied onto N-C.
- Identified metal catalyst candidates (NiMo, NiCo, NiCoMo) from literature research.

Intensity / a.u

405

402

Binding energy / eV

396

399

Cost performance modeling

- Test driving DOE H2A model for hydrogen production
- Successfully ran the model with mock input values
 - Received suggestions from NREL experts
 - Conducted preliminary cost estimation of feedstock, yield and required reactor size
- Working on implementing the model for this work

Responses to Previous Year Reviewers' Comments

• This project just started this year.

• Oregon State University (OSU)

- Liu group (Lead): biohydrogen production
- Murthy group: feedstock treatment
- Center for Genome Research and Biocomputing (CGRB): microbial community characterization

• Pacific Northwest National Lab (PNNL)

- Shao group: cathode development
- Viswanathan group: cost performance modeling
- Oregon Nanoscience and Microtechnologies Institute (ONAMI)
 - Supplemental funding to support a graduate student to work on this project

Remaining Challenges and Barriers

- Butyrate utilization rate by exoelectrogens may be slower than that of acetate in MEC
 - Enrich butyrate-utilizing exoelectrogens
 - Addition of butyrate-utilizing pure cultures
- Methane production may occur during long term
 operation
 - Apply low-cost methane inhibitors to inhibit methanogens
- Cathode performance may deteriorate over time
 - Evaluate/modify the cathode catalyst to enhance stability

Remainder of the year:

- •Characterize the microbial community
- •Optimization of fermentative H_2 production in continuous-flow reactors
- •Develop hybrid nonprecious metal electrocatalysts for MEC cathode
- •Evaluate MEC H₂ production rate from fermentation liquid products
- Cost performance modeling

FY 2017-2018:

- MEC development
 - Integrate the cathode materials developed
- •Hybrid system design/fabrication
- •Evaluation of the hybrid system with glucose
- •Cost performance modeling

Technology Transfer Activities

• Technology-to-market or technology transfer plans or strategies

- IP related to reactor design and operation
- IP related to cathode catalyst/material
- Scale up the system
- Identify industry partners for commercialization

• Plans for future funding

- Responding to NSF PFI opportunities
- Seeking support from industry partners

Summary

Objective: Demonstrate a novel microbial system for efficient H₂ production from low-cost biomass

Relevance: Provide a green and renewable approach for H₂ production at a cost less than \$2/kg

Approach: Develop a hybrid fermentation and microbial electrolysis cell (F-MEC) system that can be integrated with lignocellulose pretreatment/hydrolysis or wastewater treatment processes for H2 production.

Accomplishment: Identified a microbial community that is capable of producing hydrogen from all major sugars in lignocellulosic biomass hydrolysates; Synthesized nitrogen doped porous carbon for loading the non-precious metal catalyst

Collaborations: A team comprised of a university (OSU), a national lab (PNNL), and a state signature center (ONAMI).