

Improved Hydrogen Liquefaction through Heisenberg Vortex Separation of para and orthohydrogen

Chris Ainscough (NREL PI/Presenter) Jacob Leachman (WSU) National Renewable Energy Laboratory June 8, 2016

Project ID #PD130

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline and Budget

- Project start date: 11/1/2015
- Project end date: 9/30/2018
- Total project budget: \$2,094k
 - Total recipient share: \$0
 - Total federal share: \$2,094k
 - Total DOE funds spent*: \$175k

* As of 3/31/16

Barriers

- H. High-Cost and Low Energy Efficiency of Hydrogen Liquefaction
- Increase liquefaction cycle efficiency from FOM 0.35 → >0.5
- Lower liquefier installed capital cost (~\$2.5M/MTPD) / unit capacity (30 MTPD)
- Lower liquid delivery cost (\$4-15/kg depending on range)

Partners

- Washington State University
- Praxair

Relevance: Good renewable resources aren't generally where the liquefaction plants are.

Current liquefaction cycle Figure-of-Merit (FOM) = 0.35

FOM = ratio of ideal to real specific work

First concept in history that directly uses ortho/para conversion to aid in cooling.

- Goal: Develop vortex tubes for hydrogen liquefaction from TRL 2 to TRL of 4 in three years, such that technology can be commercialized to units 5-30 MTPD in size.
- Scientific Merit: Improve efficiency of liquefaction by > 40% (from 0.35 to >0.5 FOM) by minimizing use of refrigerant.
 - Exothermic ortho/para conversion results in significant refrigerant use.
 Vortex concept leverages catalysts for reverse endothermic reaction
 - Vortex motion cools para hydrogen for subsequent liquefaction

Approach: Para-orthohydrogen manipulation

In 1932, Werner Heisenberg won the Nobel Prize: "for the creation of quantum mechanics, the application of which has, *inter alia*, led to the discovery of <u>the allotropic forms of hydrogen</u>."¹

¹Nobelprize.org accessed 2010

"Partial ortho-para conversion . . . Offers the greatest opportunity for reduced liquefaction power consumption." C. Baker, Union Carbide 1979

Approach: Para-ortho hydrogen manipulation

- Fluid Mechanics of Vortex Tube:
- Compressed gas forms a vortex, with outer fluid flowing right and core left.
- Radial ΔP promotes ΔT drop in core.
- Heat pumping from the cold core to the hot due to viscous work streaming
- More complications from frictional heating, turbulence, recirculation, etc.

Ortho/para separation and conversion drives cooling.

Milestones & Accomplishments

Customer-centric development approach.

- 1. Completed a House of Quality (HOQ) analysis to align project with stakeholder needs.
- Developed predictive 1st order and CFD models of vortex tubes at cryogenic temperatures with hydrogen.
 - a. Modified an existing experiment to measure cryogenic hydrogen vortex tube performance.

 Completed 1st helium-hydrogen-neon liquid phase density measurements for refrigerant mixtures.
 Developed a steady state model of cycle performance and conducted exergy analysis.

Task 1 - Optimize vortex device for para-ortho conversion & separation

Task 1.3) Vortex Tube HoQ

Key variables: Refrigerant composition, para-ortho conversion rate

Task 1.2) 1st Order Vortex Tube Model

Vortex tube offer much more potential than incumbent J-T valve

Model predictions for T drop:

- 1. "2nd law estimate" Eiamsa-ard and Promvonge (2008)
- 2. "Empirical model" Merkulov (1969)
- 3. "Thermo estimate" Polihronov and Straatman (2012)
- 4. "Semi-empirical" Ahlborn and Gordon (2000)
- 5. "Maxwell demon" Liew et al. (2012)
- 6. "Extended HEX-model" Matveev and Bunge (2016) with and without 5% p/o conversion
- 7. Joule-Thomson process

Preliminary experimental data (orange) is on track

Task 1.2) CFD Vortex Tube Modeling

- ANSYS Fluent was selected as a Computational Fluid Dynamics (CFD) tool for detailed modeling of processes in a vortex tube
- Mesh-independence studies and model validated with previous numerical simulations.
- Parametric model optimization underway.

Have a predictive CFD model validated against literature.

251.5

ANSYS

Task 1.3) Vortex Tube Experiment

- Cryocatalysis Hydrogen Experiment Facility (CHEF) has previously completed para-ortho conversion studies.
- Liquefies hydrogen and converts to pure para, utilizes hot-wire anemometers to measure outlet composition.
- Test plan varies cold-fraction, pressure ratio, temp, catalysis.

Task 2 - Develop fundamental property models for He-H₂-Ne refrigerant mixtures

Task 2.1) Refrigerant Mixture Review

- He-Ne-H2 (a.k.a. helium) mixtures considered for use as refrigerant
- No liquid P-p-T-x for any binary He-Ne-H2, required by EOS

Helium-Neon Sys	stem S	umma	ry of Property Data	<u>a</u>	Hy	drogen-Neon Sy	/stem S	umma	ry of Property Da	ata
Author	Year	#	Temperature	Pressure	Author	Year	#	Temperature	Pressure	
			range (K)	range (MPa)				range (K)	range (MPa)	
	Ρ-ρ-Τ					VLE				
Holborn & Otto	1924	39	233.16-313.14	0.109-3.705	He	ck & Barrick	1966	92	26.00 - 42.50	0.710 – 2.513
Vogl & Hall	1972	51	273.10-673.47	2.361-10.057	′Str	reett & Jones	1965	94	24.59 - 33.73	0.045 – 1.389
	VLE					Second Virial Coefficient				
Heck & Barrick	1974	76	26.95-41.91	0.284-20.336	Bre	ewer & Vaughn	1969	8	148.15 - 323.13	
Knorn	1967	22	24.71-27.03	0.608-5.168	Kn	obler et al.	1959	1	90.02	
	Second Virial Coefficient					SND				
Brewer &	10.50	8	148.16-323.13		Gü	isewell et al.	1970	76	25.00 - 31.00	
Vaughn	1969									
Knobler et al.	1959	1	90.02			Extensive literature review. We think we have everything worldwide, since the beginning of time.				
Holborn & Otto	1924	5	273.10-673.13							

Task 2.2) Refrigerant PvT-x Measurements

Helium

Modified single sinker densimeter for cryogenics to enable PvT-x measurements of He-Ne-H2 mixtures.

PURE NEON						
Temperature	Pressure	Density	Ref. Density			
[K]	[PSI]	[kg/m^3]	[kg/m^3]			
31.2	50.4	1133.0	1130.4			
34.0	174.6	1076	1076.3			
38.0	238.8	976.4	975.92			
42.0	281.3	809.2	807.97			

Ne and Para-H2 measurements within 0.15% of standards!

Single Sinker Densimeter

Neon-Helium Mixtures						
Pressure	Density	Neon				
[PSI]	[kg/m^3]	(% Mole				

		= • • • • • • •		
[K]	[PSI]	[kg/m^3]	(% Mole)	(% Mole)
32.0	69.1	1112	98.4	1.6
36.0	134.5	1012	97.8	2.2
33.0	285.0	1095	98.7	1.3
38.0	298.3	939.9	98.2	1.8

Temperature

Task 3 - Design and assess vortex liquefaction cycle performance

Task 3.3) Cycle House of Quality

Vortex tube performance and precooling method are key

Task 3.3) Steady State Cycle Analysis

- Fully integrated REFPROP hydrogen ortho/para equations of state
- Modular platform enables rapid layout re-configuration

Task 3.3) Steady State Exergy Analysis

All effort focused on the no. 1 exergy destroyer in the system

- The majority of the exergy destruction is in the vortex tube and heat exchanger
- Raising the pressure ratio across the vortex tube increases its contribution to exergy losses
- Increasing the hot flow fraction indirectly increases exergy losses, as the hydrogen has to flow through the vortex tube multiple times on its path to liquefaction

Accomplishments and Progress:

Responses to Previous Year Reviewers' Comments

• This is the first review for this project.

Collaborations

Washington State University (sub)

- Development of o/p conversion and separation technology
- Bench scale testing
- Static thermodynamic modeling

• Praxair

- Industry input and oversight
- Makes sure the project will result in relevant technology

Remaining Challenges and Barriers

- Prove the performance of the vortex tube at the bench scale
- Scale up the technology and demonstrate performance at NREL
- Optimize the locations for small scale plants with respect to hydrogen markets and renewable resources

Proposed Future Work

• All efforts focused on go/no-go for end of June.

- While flowing < 500 gm/hr of hydrogen to a vortex tube, obtain thermal conductivity measurements and calculations showing endothermic para/ortho conversion of 5% of a stream.
- Once successful, we will proceed with tasks 4 and 5 for techno economic analysis and design of the scale up test bed. Milestone for end of FY.
 - Complete techno-economic and thermodynamic analysis based on models and data developed in the project to date of a 5,000-30,000 kg/day liquefier. Compare to DOE goals of FOM 0.5, 12 kWh/kg H2, and incumbent technologies.

Technology Transfer Activities

 J.W. Leachman, "Device to separate and convert ortho & parahydrogen using a vortex tube with catalyst," Provisional Patent Application Number 62101593, 01/09/2015.

- Relevance Increase Efficiency, reduce cost
- Approach Exhaustive incorporation of earlier work, world's leading researchers
- Accomplishments CFD model, HoQ, initial bench testing, refrigerant mix properties
- Collaborations Active industry participation and oversight
- Future Work SMART go/nogo and annual milestones.