







# **Compatibility of Polymeric Materials Used in the Hydrogen Infrastructure**

Kriston Brooks, PNNL (PM, Presenter) Kyle Alvine, PNNL Chris San Marchi, SNL Nalini Menon, SNL Alan Kruizenga, SNL Amit Naskar, ORNL Barton Smith, ORNL Jong Keum, ORNL Mike Veenstra, Ford

June 7, 2016

PNNL-SA-117520

This presentation does not contain any proprietary, confidential, or otherwise restricted information



### **Overview**



Proudly Operated by Battelle Since 1965

#### Timeline

- Project Start Date: October 2015
- Project End Date: September 2018
- % Completed:14%

### Budget

- Total Project Budget: \$1800K
  - Total Funds Spent (as of 3/31/16) \$82K (PNNL)
     \$129K (SNL)
     \$17K (ORNL)

### Barriers

- A. Safety Data and Information: Limited Access and Availability
- G. Insufficient Technical Data to Revise Standards
- J. Limited Participation of Business in the Code Development Process
- K. No consistent codification plan and process for synchronization of R&D and Code Development

### Partners

- SNL
- ORNL
- Ford Motor Company





### **Relevance and Objectives**

### **Project Objective**

Provide scientific and technical basis to enable full deployment of H<sub>2</sub> and fuel cell technologies by filling the critical knowledge gap for polymer performance in H<sub>2</sub> environments.

| Barrier                                                               | Project Goal for this Year                                                                                                                                                        |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Barrier J: Limited<br>Participation of Business                       | Gather and assess stakeholder input for their challenges and materials and conditions of interest for $H_2$ compatibility.                                                        |  |
| Barrier G: Insufficient<br>Technical Data                             | Develop three standard test protocols for evaluating polymer compatibility with high pressure $H_2$ : (1) cycling tests, (2) in-situ tribology tests, and (3) neutron scattering. |  |
| A. Safety Data and<br>Information: Limited Access<br>and Availability | Develop an approach to disseminate test protocols and compatibility information to SDOs and support the deployment of $H_2$ infrastructure.                                       |  |

# **Overall Technical Approach: Reporting Period**

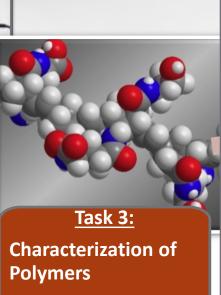


Proudly Operated by Battelle Since 1965

#### <u> Task 1:</u>

#### Stakeholders' Input

- Materials of Interest
- Operating Conditions of Interest
- Challenges faced
- Test methods currently employed by them (On-Going)




#### <u>Task 2:</u> Test Metho

#### Test Methodology Development

- Selection of relevant polymers
- Determining preliminary test parameters
- Conducting preliminary tests and establishing optimum conditions of operation

(On-Going)



 Baseline properties before and after exposure to H<sub>2</sub>

### (Future Work)

#### <u> Task 4:</u>

#### Disseminate Information

- Lay the groundwork and deliver preliminary data for a database
- Share results with stakeholders
- Feedback from them to improve/modify test methodologies
- Identify dissemination approaches: Technical Reference (Future Work)



### Approach Task: 1 Gather and Assess Stakeholder Input (Barrier J: Limited Participation of Business)



Proudly Operated by Battelle Since 1965

### Stakeholders (20 participants to date)

- System Users
  - Automotive, Aerospace, Stationary
- System Suppliers
  - Tanks, H<sub>2</sub> gas
- Component Manufacturers
  - Valves, Compressors
- Seal Producers
  - O-rings, seals, tubes, liners
- Polymer Manufacturers
- Consultants
  - CSA, ASME
  - Academia



<u>Task 1:</u> Stakeholders' Input

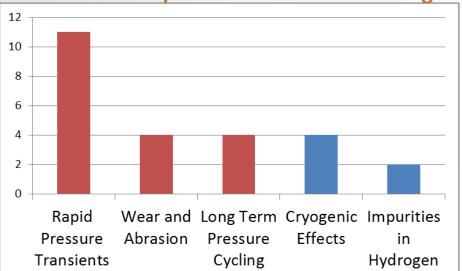
- Materials of Interest
- Operating Conditions of Interest
- Challenges faced
- Test methods currently employed by them



Proudly Operated by Battelle Since 1965

#### **Task 1: Stakeholder Input** (Barrier J: Limited Participation of Business)

### Questions Asked for Stakeholders


- Challenges Related to H<sub>2</sub> Compatibility
  - What failure mechanisms or degradation have you observed or are concerned about?
- Operating Conditions of Interest
  - What operating conditions are you most concerned about for polymers in hydrogen service for your application (e.g. temperature extremes, pressure cycles)?
- Suggested Polymers
  - What polymers or applications are most needed for hydrogen compatibility of polymers?
- Availability of Compatibility Information
  - Is the compatibility information in the literature is sufficient to meet your needs?
  - What tests do you use to evaluate hydrogen compatibility?
- Method of Collecting and Disseminating Information on Polymer Compatibility
  - What is the most valuable method to disseminate hydrogen compatibility for polymers information to your sector?

### **Task 1: Stakeholder Input**



Proudly Operated by Battelle Since 1965

- Challenges Related to H<sub>2</sub> Compatibility
  - Rapid Pressure Transients
    - Explosive decompression, blistering, liner collapse
  - Long Term Pressure Cycling
    - Fatigue, change in mechanical properties
  - Wear and Abrasion changes from H<sub>2</sub> permeation in the material
    - O-ring and valve seat leakage)
  - Dimensional and Mechanical Properties changes
    - O-ring and valve seat leakage)



#### Number of Respondents for Each Challenge

Some Stakeholder Challenges may be **Unrelated** to H<sub>2</sub> Compatibility

- Temperature effects associated with sub-ambient and cryogenic temperatures
- Impurities in the hydrogen impacting fuel cell use

## **Task 1: Stakeholder Input**

### Take-away messages from stakeholder survey:

- Wide range of suggested polymers
- Conditions of Interest:
  - -40 to +85 degrees C
  - 1(atm.) to 880 bar (13,000 psi)
  - Cryogenic applications

HDPE, PB-1, PA, PEEK, PP-R/PP-RCT,

PEKK, PET, PEI, PVDF, PTFE, PCTFE

EPDM, NBR/HNBR, Viton, Levapren

Thermosetting polymers of Interest:

Epoxy, PI, NBR, Polyurethane

**Thermoplastics of Interest:** 

Elastomers of Interest:

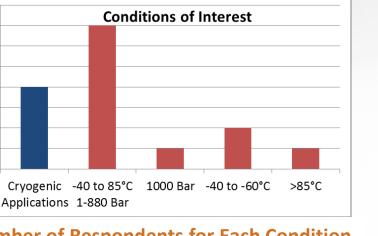
- All agree that more testing is required
- Continued Discussions with Stakeholders

Number of Respondents for Each Condition

Polymers in hydrogen service selected for test methodology development: Elastomers: Viton A ,NBR Low Temperature Seal: PTFE Tank liner Material: HDPE Hose Material: Delrin (future)

8

7


6 5

4

3

2 1

0





Proudly Operated by Battelle Since 1965

### Approach Task 2: Test Methodology Development (Barrier G: Insufficient Technical Data)

- Tests Currently Being Developed:
  - a. Pacific Northwest National Laboratory Wear and tribology studies on polymers in H<sub>2</sub>
  - b. Sandia National Laboratories Characterization studies (baseline) High pressure H<sub>2</sub> cycling of polymers
  - c. Oak Ridge National Laboratory Evaluation of H<sub>2</sub> exposed polymers with neutron and X-ray scattering methods



Proudly Operated by Battelle Since 1965



#### <u>Task 2:</u>

#### Test Methodology Development

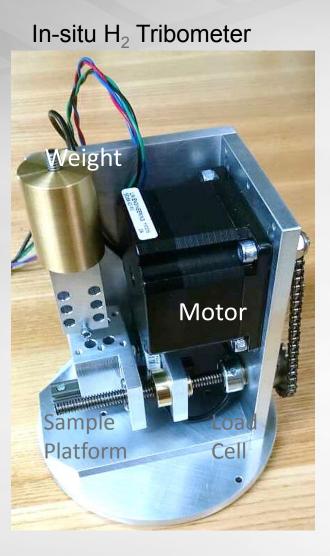
- Selection of relevant polymers
- Determining preliminary test parameters
- Conducting preliminary tests and establishing optimum conditions of operation



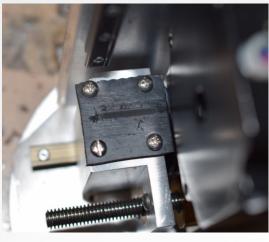
### Task 2a: Test Methodology Development: Tribology

- PNNL is developing test methodologies for in-situ high pressure hydrogen tribology
  - Application is valves and seals for infrastructure applications
  - Damage and failure mechanisms are increased wear and leakage

### Current status – Tribometer is functional and active

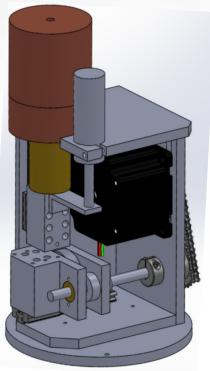

- Sample is reciprocating pin configuration
- In-situ testing with pure  $H_2$  up to 4,000 psi done; 5,000 psi capable,
- Current system designed for room temperature future upgrades may include sample heating or cooling
- Current measurement is frictional load

### Upgrade planned May 2016


- Planned upgrade to machine will add vertical LVDT to measure wear track depth in-situ
- Requires modification of the tribometer and the autoclave



# Task 2a: Test Methodology Development: Tribology




Viton sample with wear track after hydrogen





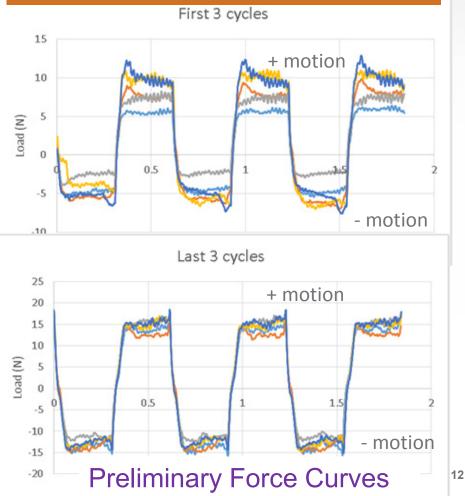
Planned upgrade with vertical LVDT for in-situ wear track measurement



# Task 2a: Test Methodology Development: Tribology



Reciprocating linear motion


Top: 202g 100 cycles

Middle: 614g 100 cycles

Bottom: 1037g 100 cycles

### Wear Tracks in Viton in H<sub>2</sub> Autoclave

# Initial variation in load response much higher than after 100 cycles

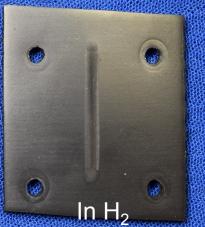


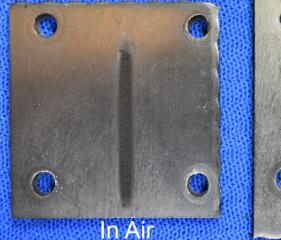


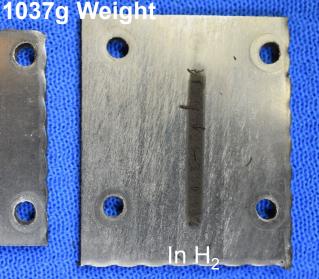
Proudly Operated by Battelle Since 1965

# Task 2a: Test Methodology Development: Tribology




#### 202g Weight




#### 614g Weight









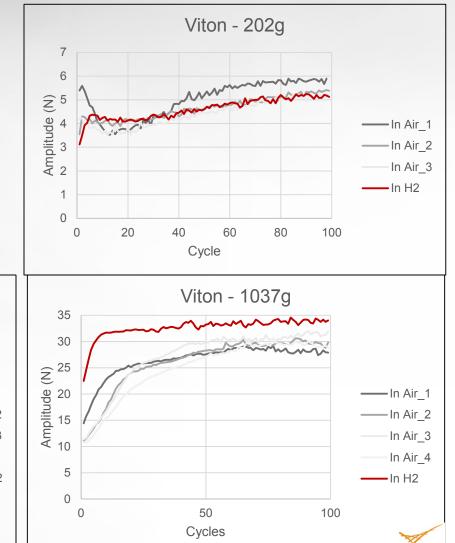
#### **Preliminary Data Results:**

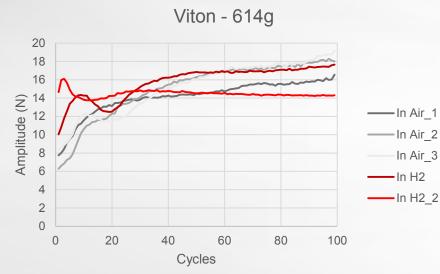
No obvious difference at low weights, damage more prominent in H<sub>2</sub> at higher weights



Proudly Operated by Battelle Since 1965

## Task 2a: Test Methodology Development: Tribology





Proudly Operated by Battelle Since 1965

**Pacific Northwest** 

#### Viton Frictional Load Comparison: Weights vs. Number of Cycles

**Preliminary Results:** We are still trying to understand the correct operational parameters needed for best results. (weight, pin size, etc.)





### Accomplishments Task 2b: Test Methodology Development: High Pressure Hydrogen Exposure



# Preliminary experiment to investigate testing parameters of a high pressure hydrogen system for Polymers

- Four polymers selected based on components in hydrogen infrastructure - NBR, Viton A (seals, gaskets, O-rings), HDPE (tank liners), and PTFE (seals, gaskets, O-rings)
- Molded specimens (O-rings, gaskets) vs sheets; off-the-shelf grades
- Static isobaric (100 Mpa), and isothermal (25°C) conditions of exposure
- Time of exposure: 1 week for saturation of 3 mm thick specimens of all polymer types (calculated based on DIFFUSE<sup>\*</sup>)
- Characterization tests performed: DMTA, Compression set (elastomers only), Polymer volume change, TGA/DSC, tensile strength (thermoplastics only), Micro CT analysis before and after exposure

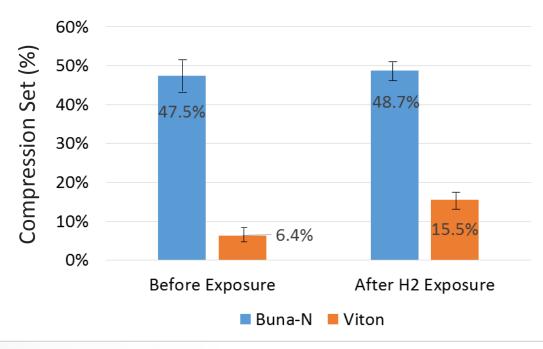
### Accomplishments Task 2b: Test Methodology Development: High Pressure Hydrogen Exposure



#### **General trends observed:**

- Polymer structure-property relationships explain trends in hydrogen environments
- As expected, Viton A and Buna N (elastomers) showed greater H<sub>2</sub> effects than HDPE and PTFE (thermoplastics) within the scope of the experiment
- With hydrogen exposure, elastomers exhibited
  - a decrease in storage modulus
  - significant change in densities with recovery afterwards (swelling)
  - increased compression set (Viton A)
  - Thermoplastics did not exhibit significant changes with hydrogen, except for mechanical properties
    - Young's Modulus 35% higher for PTFE and 15% higher for HDPE
    - HDPE exhibited cold-drawing (plastic deformation); PTFE failed in the elastic region
      May 5, 2016 | 16

# Task 2b: Test Methodology Development: High Pressure Hydrogen Exposure ELASTOMERS IN HYDROGEN

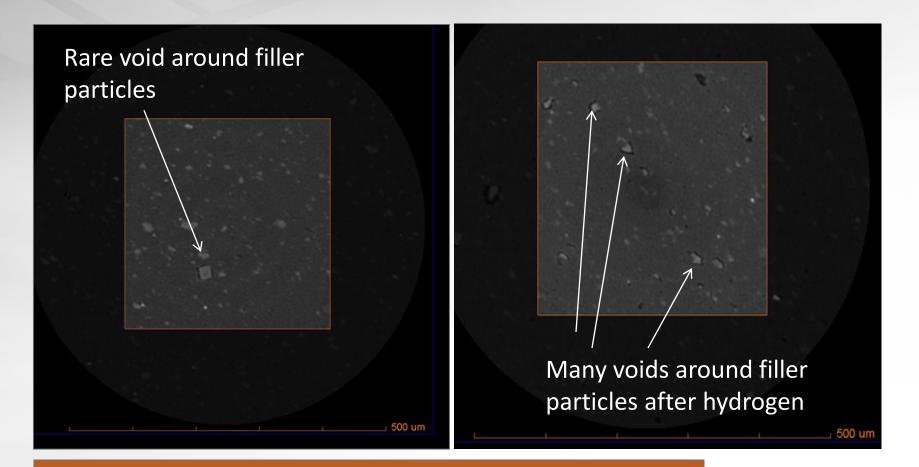



Viton A and Buna N swelling evident from comparing before hydrogen (bottom row) and after hydrogen exposure (top row)



|         | % Volume Change/gram |          |  |
|---------|----------------------|----------|--|
| Polymer | upon Hydrogen        |          |  |
|         | Exposi               | ure      |  |
|         | Immediately          | 48 hours |  |
| Buna N  | 57.2%                | 3.9%     |  |
| Viton A | 69.0%                | 11.5%    |  |

**Compression Set: Different responses to hydrogen for Viton A and Buna N** 

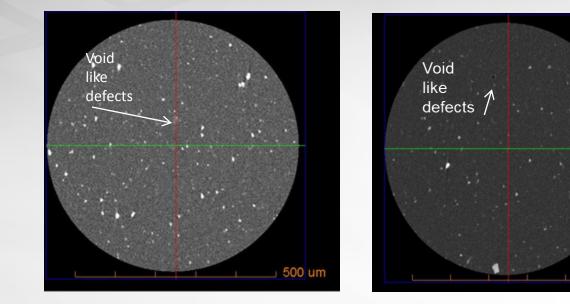



(1/8" thick sheets, Round 1  $H_2$  exposure removed after 7 days, compression set measured on 3 specimens under 75% compression at 110°C for 21 hours, recover 38 min)

May 5, 2016 **17** 

### Accomplishments Task 2b: Test Methodology Development: High Pressure Hydrogen Exposure






Micro-CT of Viton A before and after hydrogen: Voids seen around filler particles

### Accomplishments Task 2b: Test Methodology Development: High Pressure Hydrogen Exposure



500 um



Micro CT of Buna N before and after Hydrogen exposure

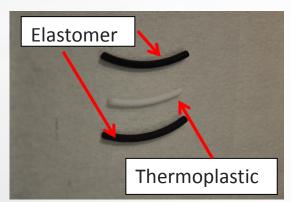
No void encapsulation of filler particles, no new defects after hydrogen in Buna N

## Task 2b: Test Methodology Development: High Pressure Hydrogen Exposure THERMOPLASTICS IN HYDROGEN



Thermoplastics are less impacted by high pressure H<sub>2</sub> soak than elastomers: little impact on Yield Stress and Strength, Swelling, and DMTA properties. Young's Modulus is increased.

#### **DMTA Results for Thermoplastics**


|                       | Before Hydrogen                                      |        | After Hydrogen                 |                             |
|-----------------------|------------------------------------------------------|--------|--------------------------------|-----------------------------|
|                       | exposure                                             |        | exposure                       |                             |
| Polymer<br>properties | Tg (°C)<br>(Tan Delta<br>peak)Storage<br>Modulus<br> |        | Tg (°C)<br>(Tan Delta<br>peak) | Storage<br>Modulus<br>(MPa) |
| HDPE                  | -110                                                 | 848±7  | -111                           | 913±25                      |
| PTFE                  | 34, 137*                                             | 431±12 | 36, 137*                       | 441±14                      |

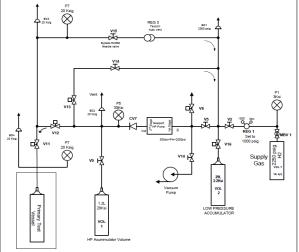
#### **PTFE Stress Strain Results**

|            | Young's | Yield  |          |
|------------|---------|--------|----------|
| Sample     | Modulus | Stress | Strength |
|            | MPa     | MPa    | MPa      |
| Ave. No    |         |        |          |
| $H_2$ Soak | 493     | 8.8    | 24.4     |
| Ave. With  |         |        |          |
| $H_2$ Soak | 667     | 9.1    | 25.4     |
|            |         |        |          |

\* PTFE shows two T<sub>g</sub>s because of possible separation of components

Degree of Swelling for Thermoplastics as Compared to Elastomers




#### **HDPE Stress Strain Results**

|                     | Young's | Yield  |          |  |  |
|---------------------|---------|--------|----------|--|--|
| Sample              | Modulus | Stress | Strength |  |  |
|                     | MPa     | MPa    | MPa      |  |  |
| Ave. No             |         |        |          |  |  |
| H <sub>2</sub> Soak | 863     | 20.3   | 24.0     |  |  |
| Ave. With           |         |        |          |  |  |
| H <sub>2</sub> Soak | 990     | 22.3   | 25.8     |  |  |
|                     |         |        |          |  |  |

### Accomplishments Task 2b: Test Methodology Development: High Pressure Hydrogen Exposure



- Basic design of a high pressure manifold is ready and necessary steps to build are in progress at SNL's Hydrogen Materials Laboratory
- Based on stakeholder meetings:
  - Finalize "most desirable" polymer selection
  - Identify potential suppliers, different grades
  - Selection of test parameters mimicking actual operating conditions



### Proposed additions for FY 17

 Addition of a environmental test chamber to pressure manifold capable of operating between -40°C and 100°C to study pressure and temperature effects in hydrogen

Sandia

### Approach Task 2c: Test Methodology Development: Neutron and X Ray Scattering



### Objective

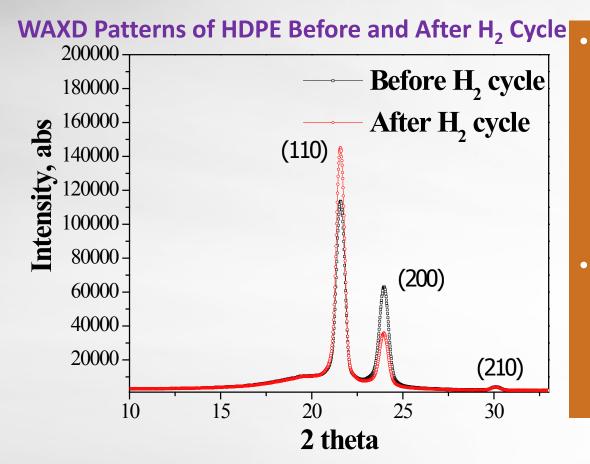
Use neutron and x-ray scattering to investigate molecular dynamics of hydrogen solvated polymers and additive-modified polymer composites

Understand effect of temperature and high-pressure H<sub>2</sub> at the interface of crystalline and amorphous regions within semi-crystalline polymers, at the interface of solvated hydrogen and the polymer matrix, and the loaded additive and the matrix

Identify microscopic properties critical to polymer performance, and predict failure modes

#### Approach

# Task 2c: Test Methodology Development: Neutron and X Ray Scattering




- Ex situ (U)SANS provides information about final pore structure after sample treatment
- In situ (U)SANS provides real-time information during solvation, compression, swelling and depressurization processes
  - Determines pore-size distribution in a polymer structure
- Use in situ neutron reflectometry (NR) provides real-time information during solvation, compression, swelling and depressurization processes
  - Determines pore-size distribution along the vertical direction of a polymer film
  - Discover morphology of the polymer crystal and amorphous regions
  - Determine local solvation of the polymer matrix
  - Examine effect of high-pressure hydrogen on interface between the loaded additive and the matrix

# Task 2c: Test Methodology Development: Neutron and X Ray Scattering



- Sandia National Laboratories has provided high pressure-cycled polymers samples for scattering studies
  - Selected thermoplastics (PTFE, HDPE) and elastomers (FKM, NBR)



- Different intensity ratios of orthorhombic (110) and (200) HDPE diffraction peaks suggest that applied high pressure  $H_2$  induced lamellar rotation along the in-plane direction.
- No martensitic deformation peak (monoclinic peak) was observed implying that no crystal deformation. Only crystal rotation.

### Approach Task 3: Characterization of Polymers

- Characterize polymers selected based on stakeholder input and preliminary test methodology development
  - Large variations in materials properties for a given polymer purchased from different suppliers
  - Establish baseline performance of select polymers in H<sub>2</sub> environment
  - Understand the impact of thermal history, processing aids, additives such as fillers etc. of polymers on H<sub>2</sub> compatibility

Characterization of Polymers

Task 3:

Baseline
 properties before
 and after
 exposure to H<sub>2</sub>

| Ther             | mal Techniques         | Spectroscopy Techniques |                     | <b>Rheological Techniques</b> |                |
|------------------|------------------------|-------------------------|---------------------|-------------------------------|----------------|
| TechniquePurpose |                        | Technique               | Purpose Technique   |                               | Purpose        |
| DSC              | Glass transition (Tg), | FT-IR                   | chemical structure, | Rotary vane                   | filler loading |
| DTA              | melt temperature (Tm), | Raman                   | molecular           | Cone and Plate                | and cure       |
| ТМА              | percent crystallinity, | UV/VIS/NIR              | characterization,   | Parallel Plate                | kinetics       |
| DMA              | aging, hardness,       | XRD                     | degree of           | Twin Screw                    |                |
| Dilatometry      | mechanical properties  |                         | crystallinity       |                               |                |



Proudly Operated by Battelle Since 1965



# **Collaborative Activities**

|      | Project Roles                                                                                                                            |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| DOE  | Sponsorship, steering                                                                                                                    |  |
| PNNL | Project Lead, Polymer Characterization, Wear and<br>Tribological Studies, Mechanical Properties and<br>Moderate Pressure                 |  |
| SNL  | Exposure Pressure Cycling studies, Mechanical<br>Properties and High Pressure, Develop Technical<br>Reference Documentation and Database |  |
| ORNL | Neutron and x-ray scattering studies                                                                                                     |  |
| Ford | Subcontracted Participant and Consultant, Represent OEM Perspective                                                                      |  |
| 9    | Stakeholder Participant and Consultant                                                                                                   |  |
|      | PNNL<br>SNL<br>ORNL<br>Ford                                                                                                              |  |



**Remaining Challenges and Barriers** 

- Large gaps exist in knowledge base for performance and degradation of polymers in hydrogen environments
- A wide range of polymeric materials for components, operating conditions and applications exist in the hydrogen infrastructure
- Large variations in material properties of a single polymeric material from suppliers is common
- Standardized tests to identify polymer compatibility have not been developed
- There is a tremendous need to develop methods for the dissemination of information on the hydrogen compatibility of polymers and standardized tests developed on this program to stakeholders and SDOs



### **Proposed Future Work**

#### Remainder of FY16

- Develop test procedure and conditions for tribological tests and high pressure cycling tests
  - Gather preliminary information about scoping study materials
- Evaluate hydrogen surface affects using neutron scattering and XRD
  - Publication of comparative porosity data on SNL/PNNL polymer specimens using SAXS,WAXS and ex situ small angle neutron scattering data
- Identify and characterize 3-5 materials to be used in future tests
  - Use results of stakeholder evaluation and preliminary tests to identify materials
  - Characterize baseline initial polymers for molecular weight, Tg, Tm, degree of crystallinity, thermal history
- Develop the framework for an initial database of compatibility results
  - Approach may be similar to that done for metallic materials compatibility

Next Year (FY17)

- Refine test procedure and conditions for characterized materials
  - Produce statistically meaningful results that can be compiled in database
- Expand the range of temperatures, pressures or cycling rates



## **Project Summary**

| Relevance                                    | Information will fill critical knowledge gap for polymer performance in $H_2$ environments by developing standard test protocols for key applications and disseminating both the test methods and results to the $H_2$ infrastructure stakeholders.                             |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Approach                                     | <ul> <li>Obtain input from H<sub>2</sub> infrastructure stakeholders</li> <li>Characterize the materials to be tested</li> <li>Develop appropriate test protocols</li> <li>Provide dissemination tools to share results</li> </ul>                                              |  |  |
| Technical<br>Accomplishments<br>and Progress | <ul> <li>Gathered information from Stakeholders on materials and conditions of interest</li> <li>Preliminary results of tribology and high pressure soak testing demonstrate impact of hydrogen</li> <li>Preparing for pressure cycling and neutron scattering tests</li> </ul> |  |  |
| Collaborations                               | PNNL/SNL/ORNL/Ford Team with Stakeholder Input                                                                                                                                                                                                                                  |  |  |
| Proposed Future<br>Research                  | <ul> <li>Continue to refine and develop of test methods</li> <li>Expand temperature, pressure and cycling range</li> <li>Develop approach to disseminating information collected</li> </ul>                                                                                     |  |  |



### Contacts

### **Pacific Northwest National Laboratory**

Kriston P Brooks 2: 509-372-4343

Kyle Alvine 🖀: 509-372-4475

### **Sandia National Laboratories**

Nalini Menon 🖀: 925-294-4872

- ⊠: kriston.brooks@pnnl.gov
- ⊠: Kyle.Alvine@pnnl.gov
- ⊠: <u>ncmenon@sandia.gov</u>

### **Oak Ridge National Laboratory**

Amit Naskar 🖀: 865-574-0309

Barton Smith 🖀: 865-574-2196

#### Ford Motor Company

Mike Veenstra 🖀: 313-322-3148

- ⊠: naskarak@ornl.gov
- ⊠: <u>smithdb@ornl.gov</u>

⊠: <u>mveenstr@ford.com</u>



### **Questions?**

# Response to previous year's reviewers' comments



Proudly Operated by Battelle Since 1965

This project was not reviewed last year.

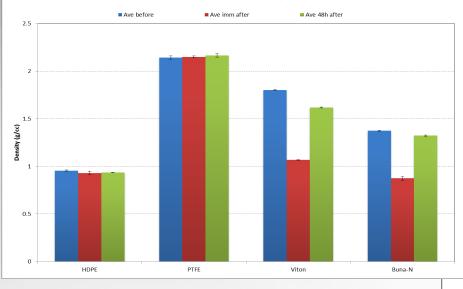


### **Technology Transfer Activities**

Stakeholders

- Maintain contact with survey participants
- Present and publish results
- Code and Standards Committees
  - Share approach to information dissemination with Committee members
- Industrial Collaborators (e.g. Ford)
  - Maintain dialog with Collaborators to discuss pathways for qualification and technology transfer

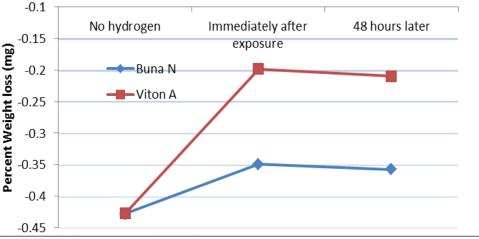



# **Technical Back-Up Slides**

# Task 2b: Test Methodology Development, High Pressure Hydrogen Exposure



#### Permeability and related information on polymers


Change in polymer density before and after hydrogen exposure Samples cut from 1/8' thick sheets, 7 days exposure, 15000 psi



|                       | Before Hydrogen<br>exposure               |  | After Hydrogen<br>exposure     |                             |
|-----------------------|-------------------------------------------|--|--------------------------------|-----------------------------|
| Polymer<br>properties | Tg (°C)Storage(Tan DeltaModuluspeak)(MPa) |  | Tg (°C)<br>(Tan Delta<br>peak) | Storage<br>Modulus<br>(MPa) |
| Buna N                | -32 34.0±2                                |  | -31                            | 19.9±3.7                    |
| Viton A               | -2 10.7±0.5                               |  | -3 5.4±1.4                     |                             |

|   | Polymer | Permeability        | Diffusion           | Solubility          |
|---|---------|---------------------|---------------------|---------------------|
|   |         | Coefficient X 10-9  | Coefficient         | coefficient         |
|   |         | $(mol.H_2/m.s.MPa)$ | X 10 <sup>-10</sup> | $(mol.H_2/m^3.MPa)$ |
|   |         |                     | $(m^{2}/s)$         |                     |
|   | HDPE    | 0.82                | 1.9                 | 4.3                 |
|   | PTFE    | 3.2                 | -                   | -                   |
| [ | Buna N  | 5.0                 | 4.3                 | 11.4                |
|   | Viton A | 3.5                 | 1.9                 | 19                  |

TGA percent mass loss for Buna N and Viton A before and after hydrogen exposure (Method 30°-200°C, 2°C/min, Ar 40.0 ml/min.)

