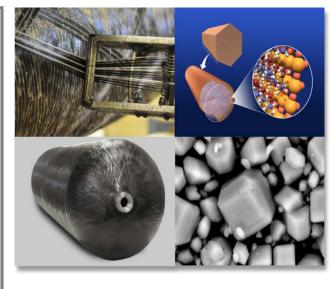


U.S. DEPARTMENT OF

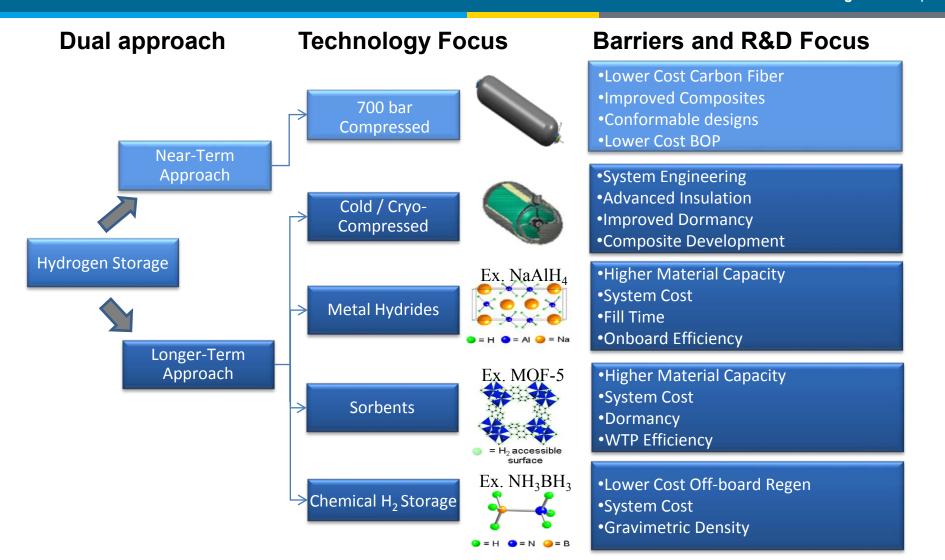

Hydrogen Storage Program Area -Plenary Presentation-

Ned T. Stetson Fuel Cell Technologies Office

2016 Annual Merit Review and Peer Evaluation Meeting June 6 - 10, 2016

Objectives

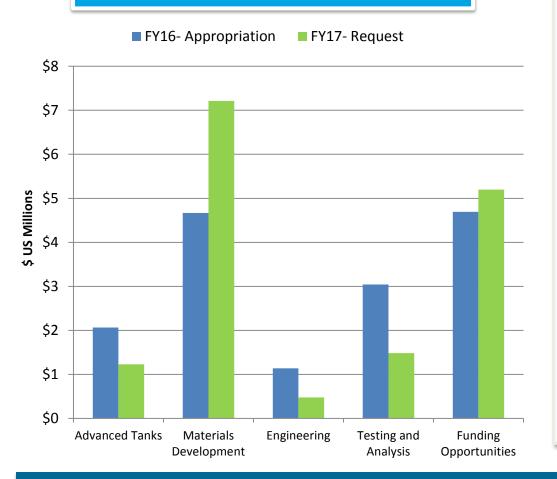
- By 2020, develop onboard vehicle H₂ storage systems achieving 1.8 kWh/kg (5.5 wt% H₂) and 1.3 kWh/L (40 g H₂/L) at \$10/kWh (\$333/kg H₂ stored) or less.
- By 2020, demonstrate H₂ storage systems in MHE applications achieving 1.7 kWh/L (50 gH₂/L); ability to recharge with 2 kg of H₂ within 2.8 minutes at \$15/kWh (\$500/kg H_{2 stored}) or less.
- Ultimate targets: to develop onboard H₂ storage systems achieving 2.5 kWh/kg (7.5 wt.% H₂) and 2.3 kWh/L (70 g H₂/L) at \$8/kWh (\$266/kg H₂ stored) or less.
- Other specific objectives are in the Hydrogen Storage Section of the MYRD&D Plan.



GOAL: Develop advanced hydrogen storage technologies to enable successful commercialization of hydrogen fuel cell products

Hydrogen Storage Team - Strategy and Barriers

ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 3



Objective: Achieve a driving range >300 miles for full span of light-duty vehicles, while meeting packaging, cost, safety, & performance requirements

Budget

FY 2016 Appropriation = \$15.6M

FY 2017 Request = \$15.6M

EMPHASIS

- Close coordination with EERE Offices on carbon fiber composites, including AMO, VTO and BETO
- Focus on cost reduction for high pressure tanks
- Increase materials development efforts through national lab-led consortium, HyMARC, and materials characterization and validation capabilities
- Portfolio is balanced between mid- and long term

Steady budget for several consecutive years, annual FOAs to initiate new projects in target technology areas

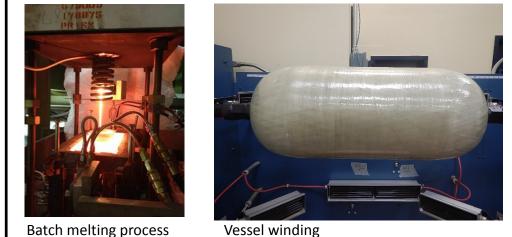
Current Status of H₂ Storage Technologies

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 5

Storage Targets	Gravimetric kWh/kg (kg H ₂ /kg system)	Volumetric kWh/L (kg H ₂ /L system)	Costs \$/kWh (\$/kg H ₂)	Full set of comprehensive hydrogen storage targets can be found in the Program's Multi-year	
2020	1.8 (0.055)	1.3 (0.040)	\$10 (\$333)	Research, Development and Demonstration Plan:	
Ultimate	2.5 (0.075)	2.3 (0.070)	\$8 (\$266)	http://energy.gov/sites/p rod/files/2015/05/f22/fct omyrdd_storage.pdf	
Projected H ₂ Storage System Performance (5.6 kg H ₂ usable)	Gravimetric kWh/kg (kg H ₂ /kg system)	Volumetric kWh/L (kg H ₂ /L system)	Costs* \$/kWh (\$/kg H ₂)	 700 bar compressed H₂ system projections 	
700 bar compressed (Type IV, Single Tank)	1.4 (0.044)	0.8 (0.024)	\$15 (\$500)	 from ANL / SA Materials-based system projections from Hydrogen Storage Engineering Center of 	
Metal Hydride (NaAlH ₄ /Ti)	0.4 (0.012)	0.4 (0.012)	\$43 (\$1,432)		
Sorbent (MOF-5, 100 bar, MATI, LN2 cooling)	1.3 (0.04)	0.7 (0.020)	\$16 (\$533)	Excellence (5/2015)	
Chemical Hydrogen Storage (AB-50 wt.%)	1.4 (0.043)	1.3 (0.040)	\$17 (\$566)	* Projected at 500,000 units / year	

Physical Storage

Low-cost CF precursors [ORNL/VT]


- Approach: Melt-spinning process to produce PAN/comonomer fiber for use as precursor for high-strength CF production
- Goal: ~30% lower cost CF than with conventional PAN precursor fibers
- Down-selected water/plasticizer combinations for PAN/VA formulations and demonstrated spinning of >100 filament tows of length >10m

ST093

Low-cost alternative fibers to CF [PPG/Hexagon Lincoln/PNNL]

- Approach: Ultra-high strength fiber glass
- Goal: New fiber glass with tensile strength exceeding Toray T700 CF at ~50% of cost
- Demonstrated pilot scale high temperature glass fiber manufacturing process and produced 1200 lb of fiber glass
- High strength fiber tanks outperformed the reference fiber tanks on burst pressure and cyclic pressure tests.
- One high strength fiber with sizing A significantly outperformed on stress rupture test.

ST115

Reducing cost of composites for use in H₂ storage vessels

Accomplishments - Project Highlights

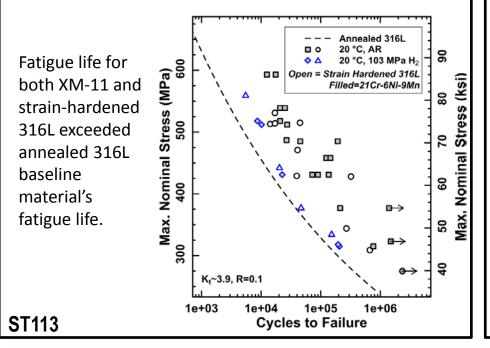
Alternative resin and manufacturing [Materia/MSU/Spencer Composites]

- Approach: low-viscosity, high-toughness resin with VARTM manufacturing process
- Goal: 35% reduction in composite costs
- Optimized vacuum infusion process and winding pattern, achieved infusion of high quality, small COPV
- Achieved burst pressure of 732 ksi compared to 693 ksi obtained from a wet wound epoxy resin tank.

Optimized cost and performance of COPVs [CTD/ORNL/Adherent Tech.]

- Approach: Graded construction utilizing thick wall effect
- Goal: demonstrate potential for 10-25% lower cost through graded-construction approach
- Evaluated Panex 35 [™] as potential lower-cost candidate fiber to replace portion of Toray T700S
- Updated Analysis: Cost reduction potential of 9-33%

ST114


ST110

Reducing cost of H₂ storage vessels through alternative manufacturing

Accomplishments - Project Highlights

Alternative materials for BOP [SNL/Hy-Performance Materials]

- Approach: Screening based on fatigue stress and computational material design
- Goal: Reductions in BOP of up to 50% in weight and 35% in cost
- Fatigue performance quantified for low-Ni austenitic stainless steel: 21Cr-6Ni-9Mn (XM-11).

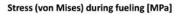
Conformable 700 bar H₂ Storage Systems [CTE/HECR/UT]

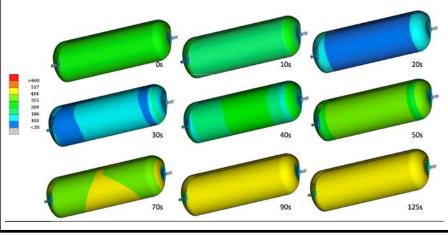
- Approach: Develop a light weight, low cost overbraided, coiled pressure vessel for 700 bar H₂ storage
- Goal: Surpass DOE system targets for specific energy (3.7 kWh/kg) and cost (< \$10/kWh)
- Achieves efficient onboard vehicle packaging through use of a shaped corrugated core over-braided with aramid fiber for strength
- Selected resin for prototype vessel permeability testing

Over-braided coiled vessels

Alternative materials for BOP and conformable designs

ST126


Cold-compressed H₂ storage [PNNL/Ford/Hexagon Lincoln/AOC/Toray]


- Approach: Synergistically consider pressure vessel and operating conditions (500 bar, 200 K)
- Goal: 30% reduction in system cost over 2013 baseline cost for 700 bar system
- Vinyl Ester and epoxy resin composites both show improved strength at 200 K
- Lower-cost vinyl ester resin (XR-4079) able to match epoxy performance with 5-7% weight

	• •			
		Ероху	Vinyl Ester	
	Test Type	Relative Burst	Relative Burst	
	Burst	105%	111%	
No Impact	Cycle A	100%	103%	
	Ċycle B	99%	95%	
Impact test round 1	Burst	57%	55%	
	Cycle A	67%	DNF	
	Ćycle B	58%	63%	
Impact test round 2	Burst	70%	82%	
	Cycle A	55%	74%	
	Ċycle B	62%	67%	Ter

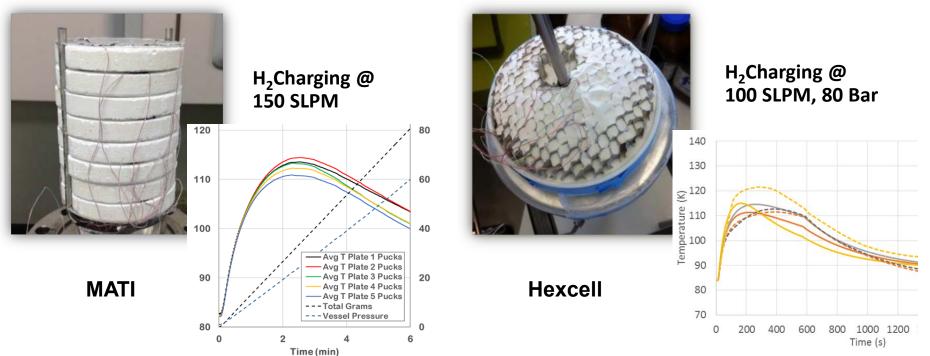
Cryo-compressed H₂ storage [LLNL/BMW/Linde/Spencer]

- Approach: Develop a thin-lined, high fiber fraction composite pressure capable, cryogenic vessel
- Goal: Demonstrate 3 kWh/kg and 1.7 kWh/L system capacities at 700 bar
- Installed new test facility for vessel cryo-compress cycle testing
- Fluid and structural computational modeling of wall stress during refueling performed

ST111

Cold and cryo-compressed H₂ storage for improved performance

Materials Based


Accomplishments – H₂ Storage Engineering CoE

 U.S. DEPARTMENT OF
 Energy Efficiency &

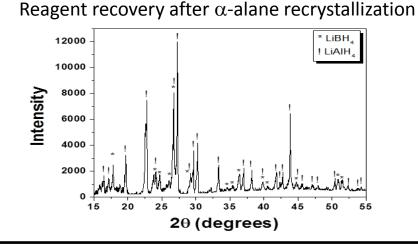
 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 12

Evaluated two sorbent prototype systems for model validation:

Posted system models online for research community use: *http://HSECoE.org*

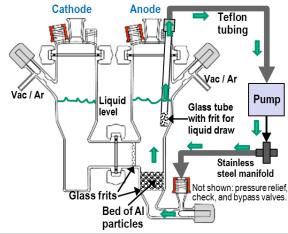
- MH acceptability envelope
- MH finite element model
- MH framework model
- Physical H₂ framework models


- Chemical hydrogen framework model
- Adsorption framework model
- Adsorption finite element model (coming)
- Tank volume/cost model ST

ST004 & ST008

Online system models maintained and accessible to the research community

Low-cost methods for α-alane production [SRNL]


- Approach: Develop low-cost, efficient processes for alane synthesis
- Focused on improving electrochemical process for efficient α -alane production, coupled with
- Improving the recrystallization process of high-capacity $\alpha\mbox{-alane}$
- Achieved >99% recovery of electrolyte and additive materials

Low-cost methods for α -alane production [Ardica/SRI]

- Approach: Develop fluidized electrochemical process for low-cost commerical α-alane production
- Goal: Reduce alane production costs to less than \$10/kg
- Demonstrated successful isolation of an alane adduct from highly conducting NaAlH₄/THF electrolyte

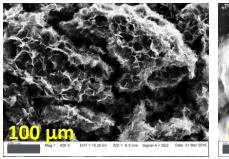
Schematic of particle bed electrochemical cell

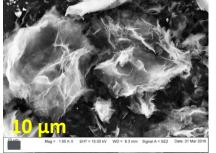
ST063

Low-cost α -alane production for commercial applications

Accomplishments - Project Highlights

Materials-based H₂ Storage for UUV Applications [SRNL/US Navy/Ardica]


- Objective: Screen H₂ storage systems to meet DoD targets and requirements for UUV applications.
- Goal: Develop complete system designs that meet Gen 1 and 2 requirements.
- Identified reversible (Gen 1) and non-reversible (Gen 2) materials that meet UUV targets
- Completed preliminary engineering analysis and proof-of-concept testing for an AlH₃ system
- Preliminary analysis indicate 2-3 times energy storage compared to battery systems

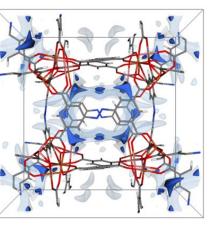


Design and Synthesis of Materials with High-Capacities for Hydrogen Physisorption [California Institute of Technology]

- Objective: Develop high performing H₂ adsorbents prepared from either graphene or exfoliated graphite.
- Goal: A hydrogen storage capacity of ≥ 11 wt.%, and near-constant isosteric heat of adsorption.
- Prepared activated graphene oxide material with 2336 m²/g
- Demonstrated metal functionalization of graphene via plasma deposition and chemical routes

KOH activation of microwaved GO

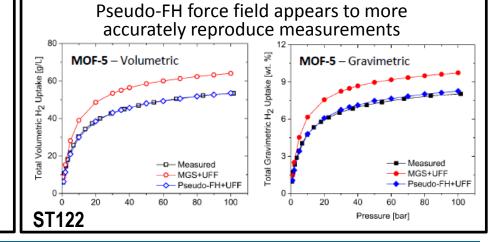
ST134


*Leveraging HSECoE models and developing improved H*₂ *sorbents*

ST120

High-Capacity & Low-Cost Hydrogen-Storage Sorbents for Automotive Applications [Texas A&M University]

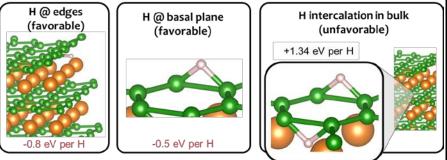
- Objective: Develop metal-organic framework (MOF) sorbents with capacities exceeding the conventional storage limit per unit surface area
- Approach: Design MOF materials with highvalent metals to increase H₂ affinity relative to surface area to exceed the Chahine rule
- Performed detailed characterization, including activation and densification studies, of PCN-250
- Measured 1.5x Chahine rule prediction for excess H₂ adsorption


Potential energy contours for H_2 absorbed in PCN-250.

Hydrogen Adsorbents with High Volumetric

Density: New Materials and System Projections [University of Michigan]

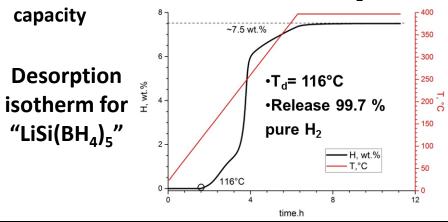
- Objective: Develop high volumetric adsorbents that also have high gravimetric capacities
- Approach: Investigate "best-in-class" sorbents identified through screening of reported structures in the Cambridge Structure Database
- Computationally screened over 2000 MOFs for adsorption capacity – identifying several promising candidates
- IRMOF-20 synthesized and shown to have higher usable capacity than MOF-5


ST121

New MOF development targeting high volumetric capacities

Improved performance for Mg(BH₄)₂ [LLNL/SNL]

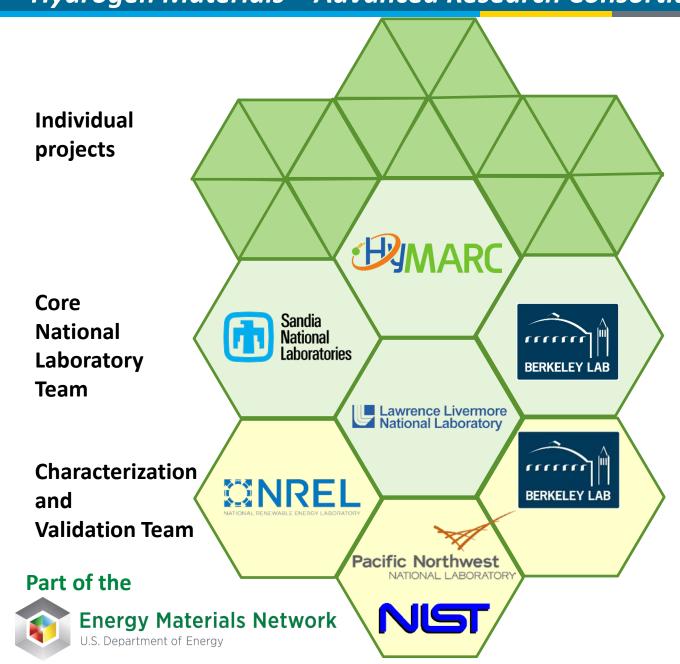
- Approach: Combined computational and empirical effort to identify ways to improve performance
- Goal: Develop flexible, validated, multi-scale model and use to develop practical material that satisfies DOE 2020 targets.
- Computed energetics of hydrogen in MgB₂
- Experimental evidence supports proposed mechanism of selective hydrogenation of B atoms concentrated at interfaces in MgB₂, forming BH₄-like species


Thermodynamic computations suggest hydrogen migrates to surfaces and interfaces of MgB₂

ST118

High-capacity Hydrogen-Storage Systems via Mechanochemistry [Ames Laboratory]

- Objective: Develop low-cost, reversible, highperformance H₂ storage materials
- Approach: Computational modeling to guide mechanochemical processing synthetic methods to produce hypersalts of silicon borohydrides
- Computational screening identified several metastable candidates to investigate
- Investigated several novel systems with potential of over 17 wt.% theoretical H₂



ST119

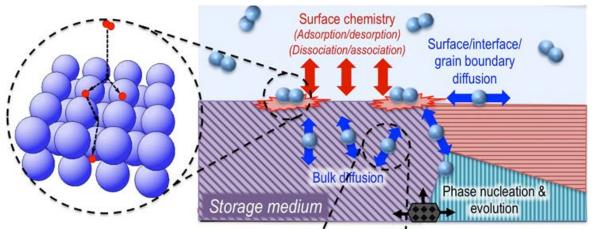
Boron-based, high-capacity H₂ storage materials

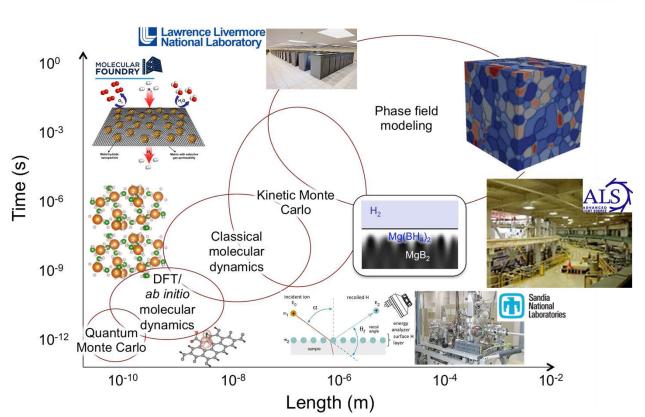
New Effort: HyMARC Hydrogen Materials – Advanced Research Consortium

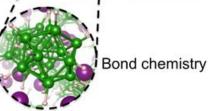
U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 17

- Applied material development
 - Novel material concepts
 - High-risk, high-reward
- Concept feasibility demonstration
- Advanced development of viable concepts

Material development tools


- Foundational R&D
- Computational modeling
 development
- Synthetic/characterization protocol development
- Guidance to FOA projects
- Database development
- Characterization Resources
 - Validation of Performance
 - Validation of "Theories"
- "User-facility" for FOA projects/HyMARC
- Characterization Method
 Development


New Effort: HyMARC The Core National Laboratory Team (SNL/LLNL/LBNL)


ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 18

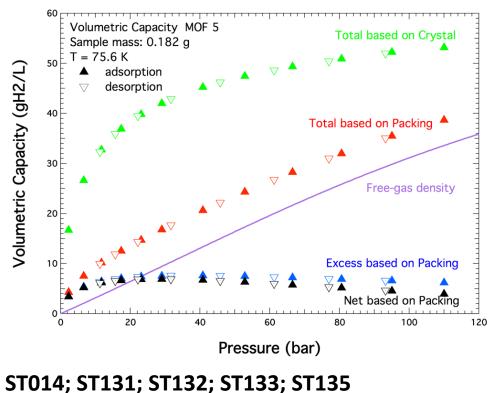
Address large gaps in the foundational science of hydrogen storage materials:

- Reaction thermodynamics
- Solid-state diffusion
- Surface chemistry
- Phase nucleation and microstructure
- Catalysis and additive behavior

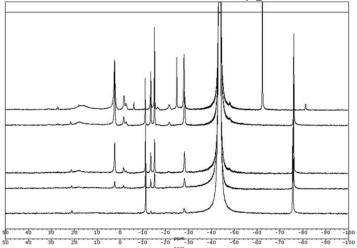
Development of tools to accelerate development of hydrogen storage materials:

- Multi-scale, multi-physics computational materials design tools
- Advance materials characterization tools
- Synthetic protocols
- Database development

ST127; ST128; ST129; ST130


New Effort: The Hydrogen Storage Characterization and Validation Research Team (NREL/PNNL/LBNL/NIST)

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 19


Previously supported core characterization and validation capabilities combined into a coordinated effort:

- To <u>Develop</u> and <u>Enhance</u> Core Characterization Techniques and Capabilities
- To <u>Validate</u> claims, concepts, and theories of hydrogen storage materials

Normalization of reporting of capacity volumetric data

In-situ solid-state MAS ¹¹B NMR of the dehydrogenation of Mg(BH₄)₂ at 200 °C

Suite of characterization capabilities available include:

- Variable temperature (cryogenic to high) H₂ adsorption measurements
- Variable temperature thermal conductivity
- Extensive NMR (liquid and solid-state)
- Microscopy
- Reaction calorimetry
- IR spectroscopy (DRIFTS)
- Various neutron methods:
 - Diffraction
 - Inelastic neutron scattering
 - Plus others

Major Achievement: *First example of multiple H*₂ molecules adsorbed at a single metal center

Energy Efficiency & U.S. DEPARTMENT OF Renewable Energy Fuel Cell Technologies Office | 20

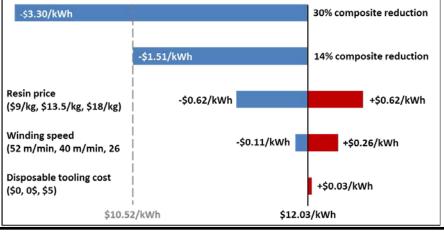
- (UC-Berkeley/LBNL); neutron diffraction by Craig Brown (NIST)
- Meets FY16 GNG for NREL-led characterization team

adsorbed at a single metal site

Runčevski, T.; Kapelewski, M. T.; Torres-Gavosto, R. M.; Tarver, J. D.; Brown, C. M.; Long, J. R. Chem. Commun., submitted.

ST133; ST135

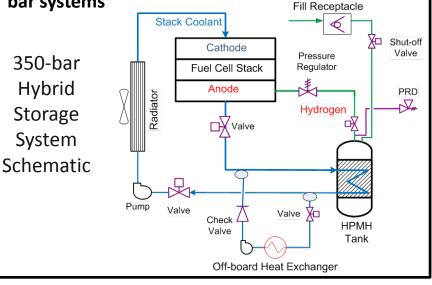
Demonstrates a synthetic path to materials with higher densities of adsorbed H_2



Analysis

Hydrogen Storage Cost Analysis [SA/ANL/NREL]

- Approach- Conduct "Design For Manufacture and Assembly" analyses of H₂ storage technologies
- Goal To identify key R&D areas for Program to focus on to reduce system costs
- Performed trade-off analyses on COPV manufacturing processes
- Completed preliminary analysis for the Materia project, indicating potential cost reduction

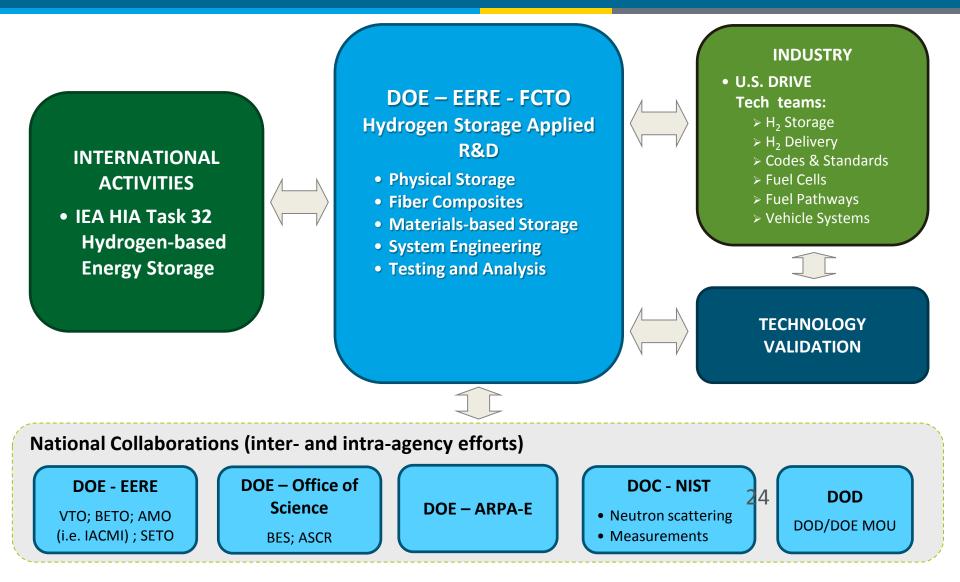

Preliminary analysis for the Materia project

H₂ Storage System Performance Analysis

[ANL]

- Approach- Conduct compete system analyses of H₂ storage technologies
- Goal To identify key R&D areas for Program to focus on to meet performance targets
- Analyzed publically available information on Toyota Mirai H₂ COPV design for comparison with DOE baseline system
- Determined properties for MH/350-bar hybrid systems to match/exceed performance of 700bar systems

ST100



Techno-economic and performance analyses used to target key R&D areas

- FY16 Office-wide FOA Topics:
 - Techno-economic analysis of onboard H₂ storage systems (1 selection announced *Strategic Analysis Inc. with ANL & PNNL*)
 - Advanced insulation concepts for sub-ambient onboard H₂ storage systems (1-2 awards expected)
 - H₂ Storage Materials Discovery HyMARC (multiple awards expected)
- Request For Information Cost Reduction and Performance Improvements of Composite Overwrapped Pressure Vessel Systems for Compressed H₂ for Onboard Vehicle Applications (<u>DE-FOA-0001596 – accessable through EERE eXCHANGE</u>)
 - Open until June 30th
 - Responses are to be submitted to <u>H2storage@ee.doe.gov</u>
- Workshop on COPV system cost reduction strategies
 - To be held fall 2016
 - Dates and location still to be determined

RFIs and workshops used to identify annual FOA topics

Collaborations

Applied R&D is coordinated among national and international organizations

Low-cost Compressed H₂ Storage Systems:

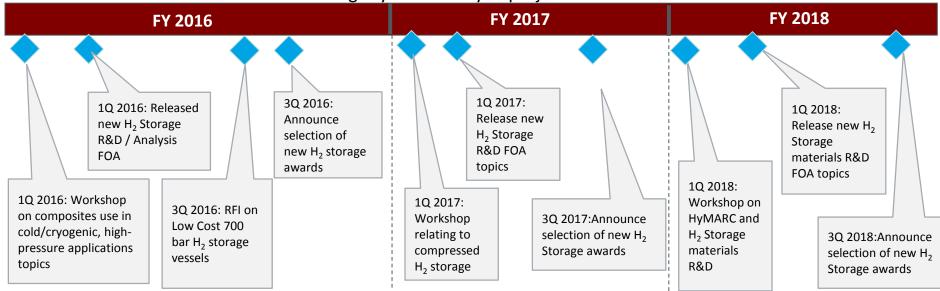
- Updated 700 bar compressed hydrogen system cost record to \$15/kWh
- Announced selections for FY16 project(s) on advanced insulation for cold/cryogenic compressed H₂ storage

Energy Efficiency &

Renewable Energy

Fuel Cell Technologies Office | 25

U.S. DEPARTMENT OF


- Released RFI on strategies for improved performance, low-cost compressed hydrogen systems
- Engage with IACMI through AMO on compressed gas storage activities

Materials-Based Hydrogen Storage:

- Launched a revamped, coordinated hydrogen storage materials development effort:
 - HyMARC consortium (led by SNL)
 - Hydrogen Storage Characterization and Validation Research Team (led by NREL)
- HSECoE completed construction, testing and evaluation of two sorbent system prototypes and posted systems models for use by R&D community
- Announce selections FY16 projects to support HyMARC effort

Analysis

Announced selection for FY16 H2 storage systems analysis project

Contacts

Ned Stetson – Program Manager 202-586-9995 ned.stetson@ee.doe.gov					
Grace Ordaz	Jesse Adams				
202-586-8350	720-356-1421				
grace.ordaz@ee.doe.gov	jesse.adams@ee.doe.gov				
Katie Randolph 720-356-1759 katie.randolph@ee.doe.gov	Zeric Hulvey ORISE Fellow 202-586-1570 Zeric.Hulvey@hq.doe.gov				
Vanessa Trejos	John Gangloff				
Support contractor	ORISE Fellow				
202-586-5153	202-586-7009				
vanessa.trejos@ee.doe.gov	john.gangloff@ee.doe.gov				

http://energy.gov/eere/fuelcells/fuel-cell-technologies-office