Hydrogen Storage System Modeling: Public Access, Maintenance, and Enhancements

P.I. – Matthew Thornton, NREL

Presenter – David A Tamburello, SRNL

Additional Contributors:

- -- Kriston Brooks, PNNL
- -- Jeff Gonder, NREL
- -- Sam Sprik, NREL

Pacific Northwest

Savannah River National Laboratory

June 9, 2016

This presentation does not contain any proprietary, confidential or otherwise restricted information.

Project ID# ST008 SRNL-STI-2016-00220

Overview

Timeline

- Start: October 1, 2015
- End: September 30, 2018
- 17% Complete (as of 4/1/16)

Barriers

- A. System Weight and Volume
- B. System Cost
- C. Efficiency
- E. Charging/Discharging Rates
- I. Dispensing Technology
- K. System Life-Cycle Assessment

Partners

Budget

- Total Project Funding: \$1,100,000
 - FY16 Funding: \$336,000
 - FY17 Funding: \$389,000
 - FY18 Funding: \$375,000

Approach

Models on the Web Technical Objectives

Collaborative effort to manage, update, and enhance hydrogen storage system models developed under the Hydrogen Storage Engineering Center of Excellence (HSECoE).

- Manage the **HSECoE model dissemination** web page.
- Manage, update, and enhance the **HSECoE modeling framework**.
- Maintain, enhance, and update the specific storage system models developed by the HSECoE.
- <u>Ultimate Goal</u>: Provide models that will accept direct materials property inputs as advancements in materials research are achieved.

Model Access Website and Support

Hydrogen Storage Engineering Center of Excellence | @ 2011. All Rights Reserved Powered by Scientific Computing | SRNI.

HSECOE

Model Access Website

Model documentation and downloads

HSECoE

H₂ Vehicle Simulation Framework

MODEL DESCRIPTION AND USER MANUAL

	Hydrogen Storage E José Miguel Pasini	United Technol National Renew	of Excellence ogies Research Center vable Energy Laboratory		
	April 21, 2014		cane anongy canonatory		
or'o	THIS SOFTWARE IS PRO	OVIDED "AS IS" AND AI	NY EXPRESS OR IMPLIED WAR	RANTIES, INCLUDING BUT NO	T LIMITED TO
ers	THE IMPLIED WARRANT DISCLAIMED. THE USER ACCEPT SOLE LIABILIT	TES OF MERCHANTAB RS MUST APPLY THEIR Y FOR ANY OUTCOME	BILITY AND FITNESS FOR A PAI R OWN ENGINEERING JUDGEN S RESULTING FROM THEIR US	RTICULAR PURPOSE ARE EXP IENT WHILE USING THE MODE IE OF THE MODELS.	RESSLY LS, AND
nual	CONTENTS				
nuai	Model description				
	Drive cycles				
	Vehicle model				
	Fuel cell system				
	Hydrogen storage	systems			
	User manual				
I					
H ₂ Vehicle Simulation Fra	mework				
MODEL DESCRIPTION AND USER MANUAL					
Hydrogen Storage Engineering Center of Excellence José Mager Phena Datied Technologies Research Center					
Jon Cosgrove National Renewable Energy Laboratory					
THE SOFTWARE IS PROVIDED HERE AND ANY EXPRESS OF HEREED WAREAU AGEN 21, 2014	TES. MOLIDING DUTINGT LIMITED TO.	providential ty a PEAN load lighted so that the			
THE INFLUENCEMENTATING OF ADMONSTRATING. IT I AND RETINING FOR A MARTIN CONCLUMENT THE UPPER DUST ANY CONCLUMENT ADDRESSING ADMONSTRATION ADDRESS TRUE LANS, ITY FOR ANY CONTOINED REDUX TWO PRIOR THERE USE OF	HERE CONSTRUCTS AND THE VICELS AND THE MICELS	in vehicle, inseling the to segmentiate the			
CONTENTS		station framework. Mow pie of the use of this	nd of the vehicle cannot be mell		
Model description		the same line under the land	2 2		
Drive cycles		scheon modules are a tormodily the volume			
Vehicle model			F IN AN IN THE STREET		
Fuel cell system			a ca		
Hydrogen skolage systems			-		
instalizion petructions	7		e te um en en operation		
Ryslant responses to	7		L'All variables		_
Installation slops			all the set of adult to the best	ets cannol achieve sufficient	
Situating the CE II and setting up the emotion	1		A DA HE HE HE WARD	wäuchd by the transmission, 6 disarpe 17 the rait clar in	
Belecting the storage system .			a and instrument	motor officiencies. The stand is determined by the	
Selecting the parameters for the nan				in the value/vs it reads among y- in vehicle to use the builtary to	
Running a single simulation			under dramp	selection event The ballery	
Bhiswarty			ng or coulling in the with the	suits a second by second	
,			arents. To accomplish the, the at a high level. The vehicle place gravity, front ado valight fraction,		
The Vende Service Service of Contraction	ordered and the strategy speet of the online conditions according with standard the	cicles, as shown in Figure 2	er unit of power, coel per unit of , mass per unit of energy, and		
The smulaton starts at	th the system at ansater symperature and then,	tor the chosen Test Case.	Samples an amount required for 3E's technical target units, such as can be evaluated over time as the	11 - 11 -	
	the U.S. Bhiltometra P	retection Agency's (BPA's) real-work	a arbain dynamonater citrang ying the shortout formula to derive d window sticker fuel economy estimate ¹	the same term.	
	The model also culpute of	n-toset afficaency and merge			
	The vehicle model uses 8 calculating all the compo-	to inputs in a power based modeling tent limits ahead of cach time step to	approach. This approach starts by simplify the logic required while calculating		
	the power of wath comparison in Figure 3. The pow	rent as the power demand gave from entrain portion of the model starts by	nite steels to be held storage system, as calculating the read loads, including the	statements for annual of	
	power to overcome drag, the rolling residence and	accelerate to a specified cycle speen media. If then sleps through the rest	d (perform of a drive cycle), and overcome (at the powertrain starting with the tankes	concerns in extended by the typicoper people converted	
		3		EPA equation (1), which the reported funi economy	
		1			

42 CFR Patietic - Fee Ecoromy of Mater Vehicles, 960 210 08 - Calculation of the economy cause

Accomplishments and Progress Model Posting Status

MH Acceptability EnvelopeSRNMH Finite Element ModelSRNFramework Model w/ Phy. Stor.UTRFramework Model w/ MHUTRTank Volume/Cost ModelPNNFramework Model w/ CHPNNFramework Model w/ ADSRN

AD Finite Element Model

SRNL SRNL UTRC/NREL UTRC/SRNL/NREL PNNL PNNL/NREL SRNL/NREL

SRNL

Complete Complete Complete Complete Complete Beta Release Complete – 4/16

Projected Release – 6/16

Accomplishments and Progress Recent Model Updates

Vehicle Framework Updates:

- Completed adsorbent model updates and integration.
 - Validated adsorbent models based on 2-liter Prototype experimental results.
- Adjusted CH tank size to ensure 5.6 kg of usable hydrogen.
- Troubleshooting of compiler and software versions.
- Updated and posted newest version of the documentation (as of January, 2016).
- Working on adding model and sub-model validation references to the web page.

HSECoE

Ongoing/Future Activities:

- Web support for publicly available models.
- Tracking and monitoring Web activity and downloads.
- Develop storage system sizing preprocessor (CH storage system).
 - Update/improve adsorbent storage system sizing pre-processor.
- Develop a stand-along isotherm data fitting routine to convert raw excess hydrogen adsorption data into D-A parameters for use in the vehicle model.
- Framework beta testing for new releases.

CH and Tank Volume/Cost Model Updates Completed

Chemical Hydrogen (CH) Storage Model in the Vehicle Level Model:

- Integrated into the framework, documented and released models to the public.
 - Exothermic (Ammonia Borane) and Endothermic (Alane) Models.
- Continued beta testing models identified issues.
 - Adjusted tank size to ensure 5.6 kg of usable hydrogen available to the vehicle.
- Developing a preprocessor to convert kinetic and thermodynamic data from material developers into input parameters in the model.
 - Preprocessor helps size the system and determine the appropriate parameters in the setup file.
 - Simplifies the use of alternative materials.

Tank Volume/Cost Model:

- Completed Model Documentation.
 - Mass compared to actual within ±10%.
 - Costs are for comparison only cost of raw materials but not fabrication.

Accomplishments and Progress Tank Volume/Cost Model: Comparison to American CNG Tanks

Type-I Tank Chromoly Steel Tank TYPE1-CP1459

- 120 liter tank 14" diameter x 59" long, working pressure 248 bar = 297 lbs.
- Tankinator estimate = 307 lbs based on tank dimensions and pressure (3.4% difference for a tank volume prediction of 137 liters).

Type-III AME1945E

- 140 liter tank, 19" diameter x 45" long, working pressure 304 bar = 151 lbs.
- Tankinator estimate = 144 lbs based on tank dimensions and pressure (5% difference).

Type-IV QT2560

- 234 L tank, 25" diameter x 40" long, working pressure 311 bar = **117 lbs**.
- Tankinator estimate = 121 lbs based on tank dimensions and 300 bar (3.2% difference).

Approach

HSECoE

Purpose of the Chemical Hydrogen Preprocessor

Adsorbent Storage System Model Updates

Approach

Adsorbent Storage System Model Description

Adsorbent Module Controls:

- Full tank pressure
 - 10 bar ≤ P_{tank} ≤ 100 bar
- Full tank temperature
 - 77 K ≤ T_{tank} ≤ 300 K
- Target empty tank temperature
 - 77 K ≤ T_{tank} ≤ 300 K
 - Model was tuned toward a temperature increase of 80 K
- Target usable hydrogen

HSECoE

- 0.5 kg ≤ H_{2,usable} ≤ 12 kg
- Type of Adsorbent / System
 - Adsorbent/System # 1 Powder MOF-5 (0.18 g/cc) in a HexCell heat exchanger
 - Adsorbent/System #2 Compacted MOF-5 pucks (0.4 g/cc) in a MATI isolated-fluid heat exchanger

HSECoE

MATI Adsorbent Storage System Validation

Op. Conditions	H _{2,in}	m _{tube,tot}	m _{proto,exp}	m _{proto,model}	%-Diff
(1.07 bar, 83.7 K) → (60.0 bar, 91.3 K)	86.85 g	41.69 g	45.16 g	45.45 g	0.639%
(1.09 bar, 83.7 K) → (100.0 bar, 84.5 K)	140.54 g	72.56 g	67.99 g	68.09 g	0.158%
(5.05 bar, 84.0 K) → (60.5 bar, 106.6 K)	59.55 g	28.51 g	31.04 g	24.57 g	-20.86%
(5.23 bar, 83.2 K) → (100.2 bar, 102.4 K)	107.24 g	58.10 g	49.14 g	49.00 g	-0.285%

Ads. Validation Results to Full-Scale Projections

	Powder MOF-5 HexCell HX	Compact MOF-5 MATI HX	
Measured 2-liter Prototype (material + HX _{internal})	(90 K, 80 bar) → (85 K, 1.7 bar)	(84.5 K, 100 bar) → (83.7 K, 1.1 bar)	
Gravimetric Capacity	0.112 g/g	0.092 g/g	
Volumetric Capacity	23.6 g/l	37.2 g/l	
Full-scale 5.6 kg System model (material + HX _{internal})	(80 K, 100 bar) → (160 K, 5.0 bar)	(80 K, 100 bar) → (160 K, 5.0 bar)	HexCell
Gravimetric Capacity	0.125 g/g	0.100 g/g	
Volumetric Capacity	32.9 g/l	44.4 g/l	MATI
Full-scale 5.6 kg System model (full system)	(80 K, 100 bar) → (160 K, 5.0 bar)	(80 K, 100 bar) → (160 K, 5.0 bar)	
Gravimetric Capacity	0.0321 g/g	0.0315 g/g	
Volumetric Capacity	18.9 g/l	21.0 g/l	

H

HSECoE

Hydrogen Vehicle Simulation Framework

HI HSECOE		Hydroge	en Vehicle Simula	tion Fra	meworl	۲				
Select storage system	Test system		Framework diagram	System dia	igram					
Test system with no internal dynamics. I cell, and this amount can be tuned to un	t Test system CH-AB Slurry Ex CH-Alane Slurry Compressed 35(cothermic Endothermic 0 bar	el cell at 6 bar. Once it has delivered 0.5kg of	H2 the delivery pressur	e drops rapidly. The	system dema	nds a constan	nt auxiliary po	ower from the fue	əl
Running scenario	Compressed 700 Cryoadsorbent MH CH/3e v3	0 bar	gle run							
Test case	Tank aux pov	wer W	(0 - 1000) 100			0				
									-	
Run simulation				(b)	eta rele	ase)				
Run simulation)			(b)	eta rele	ase)				
Run simulation Results (at end of simulation H2 delivered) kg	Pressure	bar	(b)	Temperature [C]	ase)				
Run simulation Results (at end of simulation 12 delivered 12 used	kg	Pressure Raw distance	bar miles	(b)	Temperature [C]	ase)				
Run simulation Results (at end of simulation H2 delivered H2 used Jsable H2) kg kg kg	Pressure Raw distance Calculated fuel eco	bar miles nomy mpgge	(b)	Temperature [C]	ase)				
Run simulation Results (at end of simulation H2 delivered H2 used Usable H2 Storage system mass) kg kg kg kg	Pressure Raw distance Calculated fuel eco Calculated range	bar miles nomy mpgge miles	(b)	Temperature [C]	ase)				•
Run simulation Results (at end of simulation H2 delivered H2 used Usable H2 Storage system mass Storage system volume	kg kg kg kg kg kg	Pressure Raw distance Calculated fuel eco Calculated range	bar miles nomy mpgge miles	(b) 1 0.8 0.6	Temperature [C]	ase)				
Run simulation Results (at end of simulation H2 delivered H2 used Usable H2 Storage system mass Storage system volume Gravimetric capacity	kg kg kg kg L %	Pressure Raw distance Calculated fuel eco Calculated range	bar miles nomy mpgge miles	(b)	Temperature [C]	ase)				
Run simulation Results (at end of simulation 12 delivered 12 used Jsable H2 Storage system mass Storage system volume Gravimetric capacity Volumetric capacity) kg kg kg kg L % g/L	Pressure Raw distance Calculated fuel eco Calculated range	bar miles nomy mpgge miles	(b) 1 0.8 0.6 0.4	Temperature [C]	ase)				
Run simulation Results (at end of simulation H2 delivered H2 used Jsable H2 Storage system mass Storage system volume Gravimetric capacity Volumetric capacity On-board efficiency Femperature) kg kg kg L % g/L % C	Pressure Raw distance Calculated fuel eco Calculated range	bar miles nomy mpgge miles	(b) 1 0.8 0.6 0.4 0.2	Temperature [C]	ase)				

Hydrogen Vehicle Simulation Framework

	Figure 1-1	Vehicle sim	ulation	framework
I	Flutter:	venicie sim	ulation	I amework.

EI)

HSECOE

Hydrogen Vehicle Simulation Framework

elect storage system	Cryoadsorbent	•	Framework diagram	System diagram	
ryoadsorbent system based on M	IOF-5. Cooling during refuel i	is done either with a microchannel h	eat exchanger (MATI) or with flow-through o	of cold gas.	
unning scenario	- Storage sys	stem variables - Single ru		3	
act cace	Adsorbent materia	al type - (1 - 2)	Run finished at t=57448.79 seconds		
Evel accommentant (UDDO - UVDO	Auxiliary loads	kW (0.2 - 2)	Wall time: 0:19:24.0 <		Run time &
ruei economy test (UDDS+HWY,	Final tank tempera	ature K (120 - 250)	ОК		Clock time
	Initial tank pressur	re bar (10-200)			Clock lime
Run simulation	Initial tank tempera	ature K (60 - 140)	80		
Run simulation	Initial tank tempera Target usable H2	ature K (60 - 140) kg (2 - 12)	80 5.6		
Run simulation	Initial tank tempera Target usable H2	ature K (60 - 140) kg (2 - 12)	80 5.6		
Run simulation	Initial tank tempera Target usable H2	ature K (60 - 140) kg (2 - 12)	80 5.6		
Run simulation	Target usable H2	ature K (60 - 140) kg (2 - 12)	80		
Run simulation Results (at end of simulat 12 delivered	tion)	ature K (60 - 140) kg (2 - 12) Pressure	80 5.6 5 bar	Temperature	[C]
Run simulation Results (at end of simulat 2 delivered 12 used	tion) 6.00 kg 6.00 kg	Ature K (60 - 140) kg (2 - 12) Pressure Raw distance	80 5.6 5 bar 477 miles	Temperature	[C]
Run simulation Results (at end of simulat 2 delivered 2 used Isable H2	tion) 6.00 kg 5.83 kg	Ature K (60 - 140) kg (2 - 12) Pressure Raw distance Calculated fuel economy	80 5.6 5 bar 477 miles 54 mpgge	Temperature -100	[C]
Run simulation Results (at end of simulat 2 delivered 2 used Isable H2 Storage system mass	tion) 6.00 kg 6.00 kg 5.83 kg 170.8 kg	Ature K (60 - 140) kg (2 - 12) Pressure Raw distance Calculated fuel economy Calculated range	80 5.6 5 bar 477 miles 54 mpgge 321 miles	Temperature -100 -120	
Run simulation Results (at end of simulat 2 delivered 2 used Jsable H2 Xorage system mass Xorage system volume	tion) 6.00 kg 6.00 kg 5.83 kg 170.8 kg 304.4 L	Ature K (60 - 140) kg (2 - 12) Pressure Raw distance Calculated fuel economy Calculated range	80 5.6 5 bar 477 miles 54 mpgge 321 miles	Temperature -100 -120 -140	[C]
Run simulation Results (at end of simulat 2 delivered 2 used Jsable H2 Storage system mass Storage system volume Stavimetric capacity	tion) 6.00 kg 6.00 kg 5.83 kg 170.8 kg 304.4 L 3.4 %	Ature K (60 - 140) kg (2 - 12) Pressure Raw distance Calculated fuel economy Calculated range	80 5.6 5 bar 477 miles 54 mpgge 321 miles	Temperature -100 -120 -140 -160	
Run simulation Results (at end of simulat 2 delivered 12 used Jsable H2 Storage system mass Storage system volume Gravimetric capacity	tion) 6.00 kg 6.00 kg 5.83 kg 170.8 kg 304.4 L 3.4 % 19.1 g/L	ature K (60 - 140) kg (2 - 12) Pressure Raw distance Calculated fuel economy Calculated range	80 5.6 5 bar 477 miles 54 mpgge 321 miles	Temperature -100 -120 -140 -160 -180	
Run simulation Results (at end of simulat 2 delivered 2 used Jsable H2 Storage system mass Storage system volume Gravimetric capacity 2 olumetric capacity 2 n-board efficiency	tion) 6.00 kg 6.00 kg 5.83 kg 170.8 kg 304.4 L 3.4 % 19.1 g/L 97.1 %	ature K (60 - 140) kg (2 - 12) Pressure Raw distance Calculated fuel economy Calculated range	80 5.6 5 bar 477 miles 54 mpgge 321 miles	Temperature -100 -120 -140 -160 -180	

Hydrogen Vehicle Simulation Framework

Approach

AD Module Update – "Fully Configurable Ads. Param."

- Module designed to create an adsorbent storage system based on the target H₂ storage and the operating conditions.
- Embedded MatLab script has been moved outside of the Simulink code:
 - GUI calls the adsorbent storage system creation script directly.
 - Gives user full control of what values / properties are passed into the storage module.
- Adsorbent material properties database is also part of the MatLab script.
 - This is the beginning of a user-controlled material properties input.

HSECoE

Model Website Analytics October-April

Model Website Analytics Web Flow

Accomplishments and Progress Model Website Analytics

ALL THE THE ALL	MODEL	DOWNLOAD COUNT (Q2)
	H ₂ Storage Tank Mass and Cost Model	101 (17)
A COMPANY AND A COMPANY	MHAE Model	29 (6)
	MHFE Model	41 (9)
	Vehicle Simulator Framework Model	68 (15)
A CONTRACT OF A		
1 113		

43 new downloads of the Vehicle Simulator Framework Model since May, 2015.

Collaboration

Collaborative Activities

Partner	Project Roles
DOE	Sponsorship, steering
NREL	Project Lead, Framework Management
SRNL	Adsorbent Storage System Modeling
PNNL	Chemical Hydrogen Storage System Modeling

Proposed Future Work

Model Path Forward – Next Steps

- These activities will continue beyond the HSECoE Project.
 - Maintain and enhance exiting framework models and track web activity and downloads.
 - Key enhancements will include adding sizing routines, the flexibility to accept different material properties (i.e. improve utility of the model for other materials), and consider changing to an open source code platform.
 - Development of alternative kinetic expressions.
 - Reduce model size and complexity
 - Improve model robustness and controller algorithms
- Finish beta testing and post the adsorbent framework models (April, 2016)
- SRNL will add an adsorbent Finite Element Analysis (FEA) Model similar to the metal hydride FEA model (June, 2016).

Summary and Proposed Future Work

6

Activity Deliverables / Milestones Going Forward

Deliverable	Date
Update storage system model documentation.	Completed
Update all adsorbent and CH HSECoE models based on experimental results.	Completed
Develop storage system sizing pre-processor (CH storage system).	6/2016
SMART milestone – Develop a stand-alone isotherm data fitting routine to convert raw excess adsorption H_2 data into its D-A parameters.	9/2016
Update storage system model documentation.	12/2016
Explore the possibility of changing the vehicle framework model platform to an open source code.	3/2017
Update models with any newly available data from DOE programs/literature.	6/2017
SMART milestone – Update the adsorbent hydrogen storage equations for additional theoretical formulations (such as UNILAN and/or 2-state Langmuir).	9/2017
Provide updates on the web portal activity.	12/2017
SMART milestone – Update the built-in material properties database to include new adsorbents (such as AC, HKUST-1, etc.).	3/2018
Update models with any newly available data from DOE programs/literature.	6/2018
Develop a stand-alone storage system estimator based on material properties.	9/2018
HSECOE	

Remaining Challenges and Barriers

- Share the models developed by the HSECoE with storage system materials developers.
- Develop storage system models that can be used by these material developers by making the models:
 - Flexible for a wider variety of storage materials.
 - Reasonable model run times.
 - Demonstration of their utility by evaluating recent experiments / material developments.
 - Consider new program environments and/or open source codes.

Response to Previous Year Reviewer's Comments

This project was not reviewed last year.

Questions?

HSECoE Models on the WEB Team:

Matthew Thornton David Tamburello Kriston Brooks Jeff Gonder Sam Sprik

With support from Bob Bowman and Mike Veenstra

Special thanks to the rest of the HSECoE, Jesse Adams, and Ned Stetson

Technical Backup Slides

Technical Backup

Chemical Hydrogen Storage Model Validation

Technical Backup Vehicle Model Validation

Fuel consumption for Federal Test Procedure (FTP) and highway cycles:

- Modeled results using a general vehicle are close to actual EPA reported data for specific vehicle classes.
- Provides a good estimate of relative fuel consumption for various storage systems.

