

Low-Cost α -Alane for Hydrogen Storage

PI: Dick Martin, Ardica Presenter: Steve Crouch-Baker June 8, 2016

> Project ID # ST116

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project Start Date: 15 July 2014 Project End Date: 14 July 2017

Percent complete of activities proposed for FY16: 85%*

* As of 3/26/16

Budget

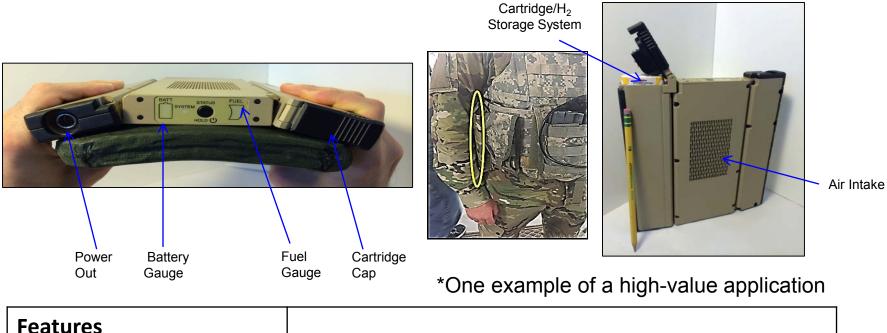
Total Project Budget: \$1,500,514

- Total Recipient Share: \$301,266
- Total Federal Share: \$1,199,248
- Total DOE Funds Spent*: \$722,566

Barriers

- Low-cost production of α-alane by electrochemical / chemical pathways
- Engineering cost analysis of entire alane synthesis and regeneration process
- Conservation of lithium aluminum hydride electrolyte
- Development of a particle bed reactor

Collaborators


- SRI International (Subcontractor)
- SRNL (CRADA Partner)

Relevance: Project Objectives

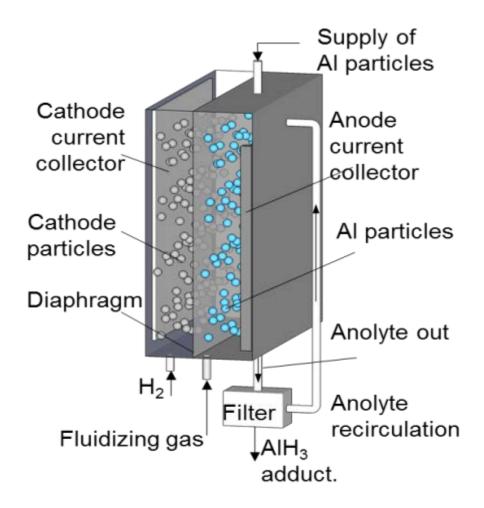
Overall: Reduce production cost of α -alane (AlH₃) to meet the DOE 2015 and 2020 hydrogen storage system cost targets for portable low- and medium-power applications. Enables broader applications in consumer electronics (smart phones, tablets, laptops...), back-up power, UAVs, forklifts, and vehicles.

- Perform engineering cost analyses of electrochemical and chemical processes to meet the cost targets for synthesis and regeneration of α-alane throughout the program
- Demonstrate practical *electrochemical process* to synthesize alane adduct building on SRNL's pioneering work that can be transitioned to a large-scale facility
- Develop an electrochemical particle bed design approach that enables increased rate of reaction and a (semi-) continuous process
- Demonstrate recovery of $MAIH_4$ (M = Li, Na) electrolyte
- Develop an efficient process for recrystallization, passivation and formulation of the alane product

Relevance: Wearable Power System for a Dismounted Soldier (WPS20)*

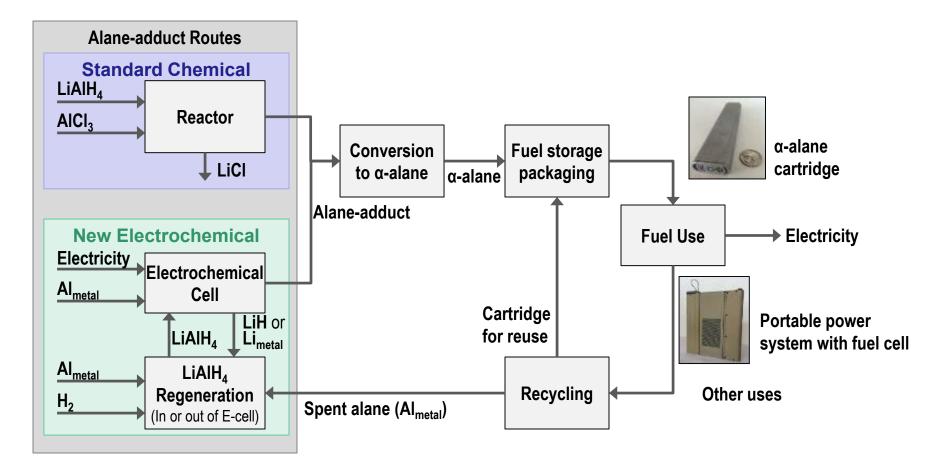
Features	
Fuel	lpha-alane (85 grams per cartridge)
Dimensions	7" x 8" x 0.89" with flexibility to conform to a small arms protective insert (SAPI) plate
Power Output	20 W continuous, 35 W peak
Cartridge/H ₂ Storage System Energy Density	1.03 KWh/kg, 1.32 KWh/L (72h at 20W continuous)
System Compatibility	Standards for soldier power distribution manager

Approach: Aluminum Particle Bed Reactor


Background

- (**R1**) 3 LiAlH₄ + Al_{metal} \rightarrow 4 AlH₃ + 3 Li⁺ + 3 e⁻ (**R2**) LiAlH₄ \rightarrow AlH₃ + 1/2H₂ + Li⁺ + e⁻ (Anode reactions)
- Electrochemical process developed by SRNL
- Uses NaAlH₄ or LiAlH₄ electrolyte and Al anode

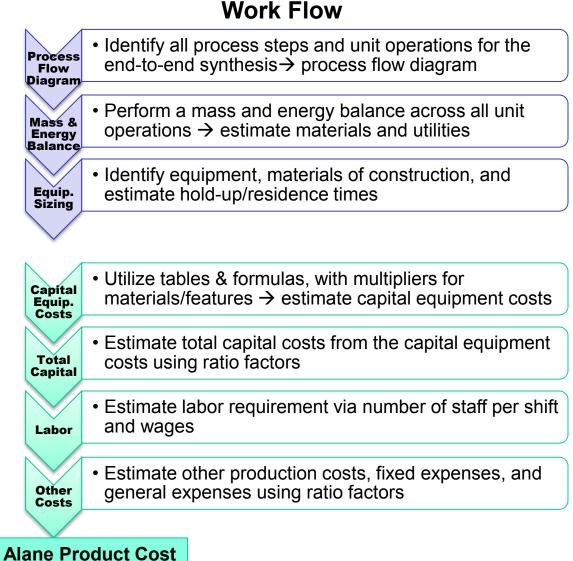
Proposed Particle Bed Reactor


- Bed of conductive particles act as electrodes, ideally both anode and cathode
- High surface to volume enhances kinetics, enabling high current and throughput. Potential for continuous process.
- Regeneration of LiAlH₄ now feasible

Schematic illustration of dual-particle bed reactor

Approach: Electrolysis Process added to Alane Production

Reducing costs in the chemical process is difficult due to feedstock costs. Changing the front end to the electrolysis process for alane adduct production can reduce these costs.


Approach: Process and Economic Modeling Methodology

Process Modeling:

- Process flow diagram and mass/energy balance for all unit operations.
- End-to-end process including feedstock preparation, down-stream chemical workup, and materials recycling and regeneration.

Economic Modeling:

- Using methodology laid out by Peters, Timmerhaus, and West¹
- Higher multipliers and ratio factors account for increased costs associated with the safety and air sensitive materials handling requirements of this process compared to a typical chemical process.

Approach: Cost Reduction Compared to the Chemical Synthesis Route to Alane

Electrochemical process reduces alane cost from an improved, consumable aluminum anode to regenerate LiAIH₄ and optimize recycling of unreacted LiAIH₄.

						Electrochemical Route	•	
			Current Cost	Chemical Route	Baseline ^(1,3)	Cathode Recycle ⁽¹⁾	Increased Scale to 3,200 MT/yr	
Champion Count		4 -	Pilot Plant	Commercial Scale	(80% AIH3 from R1)	(80% AIH3 from R1, 80% LiAIH4 regenerated)	(80% AIH3 from R1, 80% LiAIH4 regenerated)	
						legenerateu)		
Alane Fuel Costs		\$/kg alane	3500	112	81	56	29	
Cartridge Cost ⁽⁴⁾ \$/kg ala		\$/kg alane	<u>79</u>	<u>53</u>	<u>53</u>	<u>53</u>	<u>44</u>	_
		\$/kg alane	3579	165	134	109	73	Pro
Total \$/		\$/g H2	38.91	1.79	1.46	1.18	0.79	bro
DOE Metrics		\$/g H2		Target Met?				late
Low Power	2015	3	N	Y	Y	Y	Y	
	2020	1	N	N	N	Ν	Y	
Medium Power	2015	6.7	N	Y	Y	Y	Y	
	2020	3.3	N	N	N	Y	Y	

Production cost broken down in later slides

1. Chemical and electrochemical route productions costs are for a 320 MT/yr process.

- 2. Commercial scale estimate provided by Albemarle.
- 3. Cost of alane entirely from reaction (R2) is \$101, compared to \$81 for 80% from reaction (R1).
- 4. New cartridge costs based on manufacturer estimates. \$79/kg AlH₃ at small scale production, \$53/kg AlH₃ at 4 M cartridges/year and \$44//kg AlH₃ at 20 M cartridges/year. Further cost savings of 25-33% per cartridge can be realized through recycling, not shown.

Baseline (Anode Reactions)

(R1-80%) 3 LiAlH₄ + Al_{metal} \rightarrow 4 AlH₃ + 3 Li⁺ + 3 e⁻

(**R2-20%**) LiAlH₄ \rightarrow AlH₃ + 1/2H₂ + Li⁺ + e⁻

Approach: Process and Economic Modeling

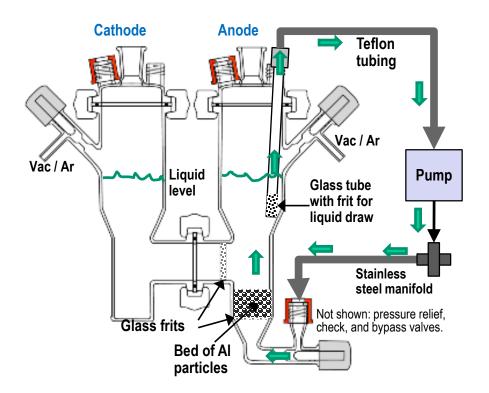
Detailed economic model example shows alane production cost of \$56 per kg from the electrochemical process in which α -alane is produced from an aluminum anode via an N-ethylmorpholine adduct and LiAlH₄ is regenerated from the cathode by-products.

roduction Costs	Basis	Ş	\$/kg
Raw materials	Mass balance	\$	16
Labor	Labor estimate	\$	4
Utilities	Energy balance	\$	2
Capital costs (depreciation and financing)	Capital Estimate	\$	17
Other (Maintenance, supplies, plant and admin overhead, etc.)	Various ratio factors	\$	16
otal Product Cost		\$	56

Key Assumptions:

- 320 MT/yr
- 80% AIH₃ is from R1
- 5 V cell potential, incl. ohmic losses
- Current density is 150 mA/cm²
- LiAlH₄ is recovered from cathode by-products with an 80% yield
- N-ethylmorpholine (NEM) adduct is employed
- LiAlH₄ is made from NaAlH₄ (NaAlH₄ supplier cost \$20/kg)
- Fully recover and recycle the solvents, NEM, and LiAlH₄ that persist into downstream processes

Sensitivity Analysis: Largest cost savings from starting material cost and scale of production

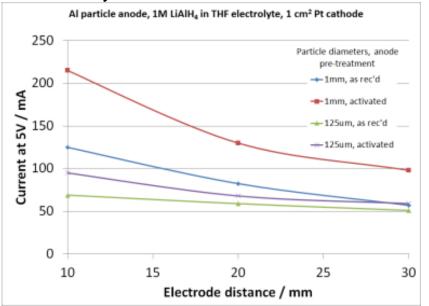

NaAlH ₄ Cost (\$/kg)	Product Cost (\$/kg AIH ₃)
100	102
20	56
5	47

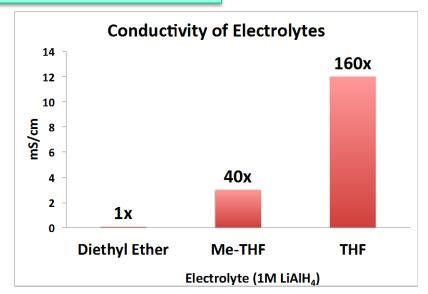
Potential (V)	Cell Electrical Cost (\$/kg AlH ₃)	Product Cost (\$/kg AlH ₃)
3	0.23	56
5	0.38	56
10	0.77	56

Annual Production (MT/yr)	Capital Investment (\$M)	Product Cost (\$/kg AlH ₃)
320	36	56
3,200	120	29
32,000	720	23

Technical Accomplishments: Particle Bed Fabrication & Operation

- SRI and Prof. Jim Evans (UC Berkeley) settled on a simple particle bed design that utilizes an anode compartment composed of aluminum particles over a porous glass frit fluidized to a variable degree by a reversible and variable flow of electrolyte
- Simple design facilitates rapid assembly and cleanup
- Allows evaluation of different aluminum particles sizes
- Facilitates the evaluation of electrolyte flow rate and flow direction to optimized fluidization vs particle size




Technical Accomplishments: Understanding Aspects of Cell Design and Operation

Design critical for optimized cell conductance

Choice of electrolytic solvent:

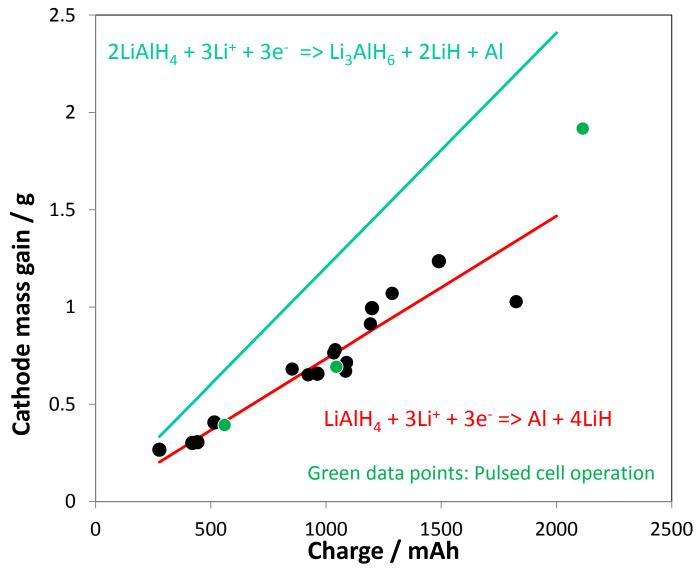
- THF-based electrolytes provide strikingly higher conductivities compared to diethyl ether.
- Conductivity increase linearly with LiAlH₄ concentration.
- Electrolyte additives LiX (X = CI, Br and I), Nethylmorpholine and glymes to 1M LiAlH₄ in diethyl ether or THF have no significant effect on conductivity.

- As expected, reduction of electrode spacing increases current dramatically.
- Activation of AI particles with 10% aqueous NaOH removes oxides. Up to 70% current increase observed.
- Smaller particles give lower current likely due to higher oxide content. Improve with better activation techniques.

Scaling the Electrochemical Vision

Assumptions:

- For a 320,000 kg/yr (292 days/yr) plant:
 → 46 kg/h (1.6 kmol/h) AlH₃
- Assume 80% of alane is produced from R1:
 - \rightarrow ~33 kA of current required
- Cell contains 1 m² of consumable anode area


Key design considerations

- Balance needs for minimal (solvent) volume and thermal management;
 - \rightarrow Recirculating electrolyte
- Minimal electrode spacing for high current density
- Optimized current pulse protocol
 - \rightarrow Avoid cathode dendrite formation
 - \rightarrow Maintain practical net anodic current density
 - \rightarrow Facilitate cathode product collection

Current Density (mA/cm²)	Number of Cells	Alane Production Rate* (kg/h) / cell	Adduct Production Rate** (kg/h) / cell	LiAIH ₄ Consumption Rate (kg/h) / cell	Power Dissipation @ 5V applied ^{***} kW / cell
50	66	0.7	2.4	1.0	2.2
100	33	1.4	4.8	1.9	4.3
200	17	2.8	9.6	3.8	8.6

* Alane content of adduct; ** AIH₃-THF adduct; *** OCV: 0.7 V

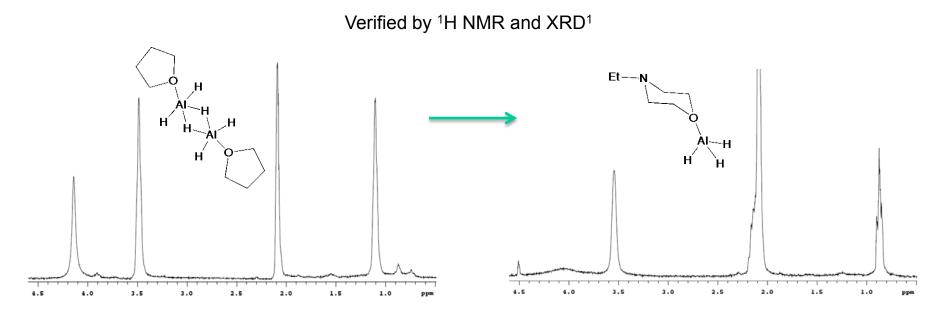
Technical Accomplishments: Cathode Reaction Products are Predominantly AI and LiH

*Pulsed cell parameters based on SRNL work

Technical Accomplishments: Cathodic Processes

Cathode product composition is sensitive to electrolytic solvent, electrode distance and electrochemical cell operational parameters.

LiAlH₄ may be consumed in various cathode-related reactions:


- A. $2\text{LiAlH}_4 + 3\text{Li}^+ + 3\text{e}^- \rightarrow \text{Al} + 2\text{LiH} + \text{Li}_3\text{AlH}_6$
- B. $LiAIH_4 + 3Li^+ + 3e^- \rightarrow AI + 4LiH$
- Diethyl ether based electrolytes give Li_3AIH_6 complex and AI. Tetrahydrofuran based electrolytes give a mixture of 4LiH and AI (by XRD, IR and Elemental Analysis). We hypothesize that this difference is due to the in-situ conversion of Li_3AIH_6 in more polar solvents.¹ $3Li_3AIH_6 \rightarrow AI + 2LiH + LiAIH_4$
- Reverse pulse method deposits identical mass of cathode materials in a laminar configuration that allows reduction in inter-electrode distances. Traps Li₃AlH₆.

Enables regeneration of electrolyte $MAIH_4$ from captured cathodic materials (Li₃AIH₆, LiH and AI)¹

C. $Li_3AIH_6 + 2AI + 3H_2 \rightarrow 3LiAIH_4$

D. 2LiH + 2AI + $3H_2 \rightarrow 2LiAIH_4$

Technical Accomplishments: Successful separation of a useful alane adduct from NaAIH₄/THF based electrolyte.

Alane THF adduct dimer is isolated then converted to the N-ethylmorpholine adduct

We can isolate an adduct from a highly conducting electrolyte (e.g. NaAlH₄/THF) that can reportedly be converted into α -AlH₃. NaAlH₄/THF based electrolyte facilitates isolation of the N-ethylmorpholine (NEM) adduct due to lower energy of solvation (Na⁺ vs. Li⁺). Conversion to α -AlH₃ currently being optimized.

J. Graetz et al reported N-ethylmorpholine adduct can be converted to α -AlH₃¹

Collaborations

Collaborators	Role
Ardica Technologies: Dick Martin (PI) (Receiving DoE project funds)	Development of alane-based hydrogen storage system for portable power
SRI International : Mark Petrie (PI), Steve Crouch-Baker, David Stout, Fran Tanzella (Receiving DoE project funds)	Development of low-cost electrochemical and chemical synthesis production methods for alane production scale-up
SRNL : Ragaiy Zidan (Receiving DoE funds through a related project)	Development of novel methods for the synthesis of low-cost alane
Albemarle: John Parks (Receiving Ardica funds)	Industrial partner for the scale up of alane production. Currently optimizing the chemical route.
UC Berkeley: Prof. James Evans (Receiving Ardica funds)	Expert advisor on fluidized bed design

Remaining Challenges and Barriers

- Minimize cell resistance through cell design; construction, testing of a scalable cell design to increase the rate of alane production
- Regeneration of LiAlH₄ from the products generated on the cathodic side of the cell
- Facile isolation of a stable alane adduct from the electrochemical reaction that is readily converted to alpha alane (e.g. N-ethylmorpholine or triethylamine alane adduct)

Proposed Future Work

- Design, fabricate, and test a scalable particle bed cell that builds on our experience with the H-cell that optimizes electrode kinetics, enables high-current, and hence high-throughput operation. Collaboration with Prof. Evans (UCB) is critical for this activity. (2016-2017)
- 2. Deposition of cathode products at high activity and yield for further reaction and regeneration of lithium or sodium aluminum hydride (MAIH₄). Modify pulse methods and fluidization of cathodic bed aluminum particles for deposition/capture of these materials. Improve morphology and optimize conversion to MAIH₄ (2016-2017)
- 3. Optimize solvent swap methods for complete separation of alane adduct from the concentrated NaAlH₄ based electrolyte. Optimize thermal conversion to α -alane from amine adducts using crystallization aides and heating profiles. (2016-2017)

Project Summary

Evaluate electrochemical/chemical routes to reduce alane synthesis cost

- Full engineering cost analysis of electrochemical and chemical processes to meet DOE metrics
- Initial analysis shows the electrochemical synthesis affords a max. ~50% reduction in alane cost
- Maximize electrolyte (LiAIH₄) recovery in electrochemical alane synthesis
- Characterized and modified morphology of materials deposited (Li₃AlH₆ + LiH + Al_(metal)) on the cathodic side of the cell
- Strategies include electrolytic solvent, electrode distance and electrochemical cell operational parameters

Optimize particle bed EC reactor (moving or static)

- Designed, constructed and characterized particle bed reactor
- Evaluated reactor as a function of particle size and flow rates
- Continued collaboration with Prof. James Evans for particle bed design
- Separation of alane from the concentrated electrolyte
- Partially recovered alane produced in an electrochemical cell using a THF/NaAlH₄ electrolyte.
- Need to optimize transformation of the alane adduct to the alpha alane product

Instruction

Technical Back-Up Slides

Model Details – Estimated Materials Requirements

- Estimated from an Excel based mass balance for all steps shown in the flow diagram.
- The quantities are automatically adjusted as the model variables are changed including: total annual production quantity of alane; reaction yields; concentrations; and extents of recycling, recovery, or separation.
- Bulk chemical prices were sourced from chemical manufacturing companies.

Material		Cost	Source		<u>Amounts</u>		<u>Costs</u>	
		\$/kg		kg/hr	kg/yr	kg/kg AlH3	\$/yr	\$/kg AlH3
Reactants & Consumables								
Hydrogen gas	\$	2.00	Cost target from EERE report	4.39	30,741	0.10	61,482	0.19
Aluminum	\$	1.81	Vincent Metals	43.17	302,521	0.95	547,564	1.71
Sodium aluminum hydride	\$	20.00	Albemarle	26.56	186,101	0.58	3,722,013	11.65
Lithium chloride	\$	5.00	Albemarle	20.85	146,103	0.46	730,514	2.29
Hydrochloric acid	\$	0.26	Shijiazuang Xinlonwei	9.78	68,503	0.21	<u>17,811</u>	<u>0.06</u>
						Total	5,079,384	15.89
Notes:								
Assumed Operational time		292	days/yr					
Hourly AIH3 production rate		45.6	kg/hr					
Annual AIH3 production rate	3	319,622	kg/yr					
Hydrogen cost based on anticip	ated p	oroducti	on cost from EERE report					

Model Details – Estimated Utilities Requirements

- Estimated from an Excel based energy balance for all steps shown in the flow diagram.
- The heating and cooling requirements are determined by the heat capacities, heat of reactions, and heat of vaporization; all of which are included in the model. The pumping requirements are estimated based on hourly volumetric throughput of the system.
- The other power requirements are only a rough estimate due to the lack of specific equipment detail at this point, however this quantity is almost negligible compared to the other energy requirements.

ElectrochemistryElectrochemical cell617Heating465Alane etherate concentration465Alane etherate flash-Solvent swap evaporation102Heating for crystallization61Solvent distillation reboiler476	906,133 - 197,843 118,807	\$	122,457	\$ 0.383
Alane etherate concentration465Alane etherate flash-Solvent swap evaporation102Heating for crystallization61	197,843			
Alane etherate flash-Solvent swap evaporation102Heating for crystallization61	197,843			
Solvent swap evaporation102Heating for crystallization61				
Heating for crystallization 61				
	927,458			
Wet solvent distillation reboiler 257	499,698			
Ether removal, LiAlH4 regeneration 19	36,724			
Solvent removal, LiAlH4 regeneration 132	257,552			
Heating Total 1,512	2,944,215	-		
Total with heat integration/recovery 1,512	2,944,215	\$	300,016	\$ 0.939
Capiting				
Cooling Alane etherate concentrate condenser 465	906,133			
Alane etherate flash condenser -	500,133			
Solvent swap condenser 102	197,843			
Crystallization condenser 11	21,837			
Post crystallization cooling 63	122,300			
Solvent distillation, ether condenser 10	20,182			
Solvent distillation, toluene condenser 385	749,298			
Alane dryer condenser 41	79,190			
Wet solvent distill, ether condenser -	-			
Wet solvent distill, toluene condenser 257	499,698			
Solids neutralization 0.01	27			
Ether condenser, LiAlH4 regen. ether removal 18.86	36,724			
Solvent condenser, LiAlH4 regen. solvent removal 5.49	10,694			
Cooling Total 1,358	2,643,926			
Total with heat integration/recovery 1,358	2,643,926	\$	269,416	\$ 0.843
Pumping (liquid and vacuum)				
t Pumping (liquid and vacuum) Estimate of total pumping 80	155,733	\$	15,869	\$ 0.050
Other				
Est. of controls, instruments, agitation, heat integration, etc. 100	194,667	Ş	19,837	\$ 0.062
Total energy costs		\$	727,594	\$ 2.276
Notes:				
Assumed Operational time 292 days				
Hourly AlH3 production rate 45.6 kg/h				
Annual AIH3 production rate 319,622 kg/yu				
Electricity cost 0.1019 \$/kW	vnr			

Model Details – Estimated Capital Investment

- Capital equipment sizes are based on the estimated throughput from the mass balance for all process steps shown in the flow diagram
- Purchase costs were determined primarily from literature table cost estimates along with some from vendor estimates. Multipliers were used to adjust the cost for materials of construction and the handling of air sensitive materials.
- The total delivered capital equipment cost is used to determine the total capital cost using ratio factors following the method first proposed by Lang^{1,2}. We used values reported in Peters, Timmerhaus, & West for fluid processing plants.
- Due to the air sensitive materials handling and safety requirements, we used factors for installation, piping, and building costs that were at the higher end of the ranges for chemical plants.

`		Approximate	Value	
Э		Ranges*	(%)	Cost (\$)
	Direct Costs			
	Purchased equipment delivered			4,806,978
	Purchased equipment installation	25-55% of purchased	55	2,643,838
	Instrumentation and controls (installed)	6-30% of purchased	25	1,201,745
	Piping (installed)	10-80% of purchased	80	3,845,582
	Electrical (installed)	10-40% of purchased	20	961,396
h	Buildings (including services)	10-70% of purchased	70	3,364,885
	Yard improvements & service facilities	40-100% of	80	3,845,582
e	Land	4-8% of purchased	4	192,279
-	Total Direct Costs			\$ 20,862,285
	Indirect			
)	Engineering and supervision	5-30% of direct costs	15	3,129,343
	Construction expenses and contractor's fee		25	5,215,571
	Contingency	5-15% of fixed-capital	10	3,245,244
	Total Indirect Costs			\$ 11,590,158
	Fixed Capital Investment			\$ 32,452,443
]				÷ ==,:•=,:•
9	Working Capital (15%)	10-20% of total capita	10	3,605,827
	Total Conital Investment			¢ 36 0E9 370
	Total Capital Investment	•		\$ 36,058,270
	* Ranges from Peters & Timmerhaus for flu		l	
	Annual AIH3 production rate	319,622	кg/yr	

Model Details -Estimated Manufacturing Cost

- The total production cost uses methodology described in Peters, Timmerhaus, and West which provides ranges that are typical for chemical processes.
- In our model, the baseline values for the additional estimates are chosen to be the middle of the ranges; however these are easily adjusted in the model.
- The alane process varies from the approximate ranges in regards to a high raw materials cost (depending on what variables are selected).
- Currently the 'patents and royalties' cost is to be determined, while the 'distribution and selling' and 'research and development' costs are ignored.

	Approximate Ranges (Peters,						
	Timmerhaus, & West)	Value Used	Basis		\$/yr		\$/kg
Manufacturing Costs							
Direct Production Costs							
Raw Materials	(10-50% of total product cost)	Materials table	Mass balance	\$	5,261,015	\$	16.46
Operating Labor	(10-20% of total product cost)	Labor Table	Labor est.	\$	946,080	\$	2.96
Supervisory and Clerical Labor	(10-25% of operating labor)	Labor Table	Labor est.	\$	322,368	\$	1.01
Utilities	(10-20% of total product cost)	Energy Table	Energy balance	Ş	727,594	\$	2.28
Maintenance and Repairs	(2-10% of fixed-capital investment)	5%	RF of fixed capital	\$	1,622,622	\$	5.08
Operating Supplies	(10-20% of maintenance and repairs)	15%	RF of maint. & rep.	Ş	243,393	\$	0.76
Laboratory Charges	(10-20% of operating labor)	15%	RF of operating labor	\$	141,912	\$	0.44
Patents & Royalties	(0-6% of total product costs)	TBD		\$	-	\$	-
Total Direct Costs				\$	9,264,985	\$	28.99
Fixed Charges							
Depreciation (Capital Costs)	(10% of fixed capital, 2-3% of building)	10%	Capital Estimate	Ş	3,605,827	Ş	11.28
Local Taxes	(1-4% of fixed capital)	2%	RF of fixed capital	\$	649,049	\$	2.03
Insurance	(0.4-1% of fixed capital)	1%	RF of fixed capital	<u></u>	324,524		1.02
Total Fixed Charges				\$	4,579,400	\$	14.33
Plant Overhead costs	(50-70% of total labor & maint. costs)	60%	RF of labor & maint.	\$	1,734,642	\$	5.43
Total Manufacturing Cost	Sum of direct, fixed, and plant overhead.			\$	15,579,027	\$	48.74
<u>General Expenses</u>							
Administrative	(15% of total labor & maint. costs)	15%	RF of labor & maint.	Ş	433,661	Ş	1.36
Distribution and Selling	(2-20% of total product cost)	0%		\$	-	\$	-
Research and Development	(2-5% of total product cost)	0%		Ş	-	Ş	-
Financing	(0-10% of total capital investment)	5%	RF of Capital	\$	1,802,913	\$	5.64
Total General Expenses				\$	2,236,574	\$	7.00
Total Product Cost	Sum of Manufacturing Costs and General e	xpenses		\$	17,815,601	\$	56

Amount of AIH3 produced per year Ignore distribution and selling costs. Ignore research and development costs. 319,622 kg/yr

Model Details – Cartridge Cost Breakdown

- The cartridge costs are based on vendor and manufacturer estimates for the various cartridge components at two different production scales.
 - As production scale is increased, cost savings are realized through automation
- Estimates are provided for both newly manufactured and recycled cartridges
 - Assumes cartridge canisters, heaters, and insulation are recyclable
 - Recycling costs for emptying, cleaning, and prepping a cartridge is assumed equal to the filling costs.

Values in \$/cartridge	Production Scale	4 M Cartridges/yr		20 M Cartridges/yr	
	Basis	New	Recyled	New	Recyled
Recyclable components					
cartridge cans/lids	Aluminum product manufacturer estimate	0.75	NA	0.75	NA
cartridge heater	Heater element vendor estimate	0.50	NA	0.50	NA
insulation	Insulation manufacturer estimate	0.50	NA	0.50	NA
Consumable components					
filters	Filter vendor estimate	0.25	0.25	0.15	0.15
stickers	Vendor estimate	0.15	0.15	0.10	0.10
powder filling	Metal powder products manufacturer estimate	<u>0.75</u>	<u>0.75</u>	<u>0.50</u>	<u>0.50</u>
Components Total		2.90	1.15	2.50	0.75
<u>Labor</u>					
Handling, testing, & overhead	Estimate	1.60	1.60	1.25	1.25
Recycling (empty, clean, & prep)	Assumed equivalent to powder filling costs	NA	<u>0.75</u>	NA	<u>0.50</u>
Labor Total		1.60	2.35	1.25	1.75
TOTAL (\$/CARTRIDGE)		4.50	3.50	3.75	2.50
TOTAL (\$/KG ALANE)		53	41	44	29

Production scale: 4 M cartridges per year, equivalent to 320 MT/yr

Mass of alane per cartridge: 85 g