Improving the Kinetics and Thermodynamics of $Mg(BH_4)_2$ for Hydrogen Storage

2016 DOE Hydrogen Annual Merit Review June 8, 2016 PI: Brandon C. Wood, LLNL

Lawrence Livermore National Laboratory (B.C. Wood, T.W. Heo, K. Ray, J. Lee) Sandia National Laboratories (L. Klebanoff, V. Stavila) University of Michigan (K. Thornton)

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Timeline	Barriers addressed				
Project start date: 07/01/2014 Project end date: 07/01/2017	 Lack of understanding of hydrogen chemisorption (Barrier O) System weight (Barrier A) Charge/discharge rate (Barrier E) 				
Budget	Team				
<u>Total project budget:</u> \$1.2M Total federal share: \$1.2M	Project Lead: Lawrence Livermore National Laboratory				
Total received: \$200K (FY14), \$400K (FY15), \$400K (FY16) Total funds spent (as of 3/16): \$681K	<u>Funded Partners:</u> Sandia National Laboratories University of Michigan				

Relevance

 $Mg(BH_4)_2$ is attractive for compact, lightweight solid-state hydrogen storage that could meet ultimate DOE targets, but it suffers from poor kinetics and undesirable intermediates

Overall project objectives:

- Combine theory, synthesis, and characterization techniques at multiple length/time scales to understand kinetic limitations and possible improvement strategies in Mg(BH₄)₂
- Deliver a **flexible**, **validated**, **multiscale theoretical model** of (de)hydrogenation kinetics in "real" Mg-B-H materials beyond idealized theoretical descriptions

Current project year objectives:

- Synthesize MgB₂ nanoparticles with < 10 nm diameter
- Measure X-ray absorption and emission spectra for bulk MgB₂/Mg(BH₄)₂ during stages of (de)hydrogenation
- Compare measured and simulated spectra on informed models to determine local chemical pathways

> 15 wt.%H

Approach: Integrated experiment-theory framework

Dehydrogenation kinetics of $Mg(BH_4)_2$ have previously demonstrated susceptibility to improvement via **structural (nanosizing)** and **chemical (doping)** changes

Our project integrates theory, synthesis, and characterization to understand limitations and discover how, why, and when these improvement strategies help

Approach: Multiscale characterization and modeling

Approach: Feedback cycle for modeling diverse processes

Experiment-theory feedback cycle allows modeling of complex surface and interface processes under non-equilibrium (de)hydrogenation conditions

Approach: Combining chemistry and materials science

Three project phases adapt tools from chemistry and materials science

Phase I: (De)hydrogenation thermodynamics in bulk Mg(BH₄)₂/MgB₂ **Phase II:** Nanoscale properties and kinetics **Phase III:** Catalyst additives and optimization

Local chemistry of defects and B_xH_y molecular complexes

- Focus on single-phase portions of reaction pathway
- Combine DFT/ab initio MD with chemically sensitive spectroscopy (XAS, NMR, FTIR, NVS)

• Collaboration on boron chemistry with T. Autrey, PNNL

Evolution of solid phases

- Focus on multiphase portions of reaction pathway
- Combine phase-field modeling with uptake kinetics measurements and diffraction

• Thermodynamic analysis based on DFT simulations within assumed microstructure

Progress on FY16 and post-AMR FY15 milestones (as of 3/16)

- Initial XAS/XES spectroscopy of bulk Mg(BH₄)₂ and bulk MgB₂ (complete)
- Initial theoretical calculations of XAS/XES spectroscopy and electronic structure of bulk Mg(BH₄)₂ and bulk MgB₂ (complete)
- Identify intermediate bulk phases during dehydrogenation of bulk Mg(BH₄)₂ and rehydrogenation of bulk MgB₂ (complete)
- Calculate energetics of B-H and B-B bond breaking and forming in Mg(BH₄)₂/MgB₂ (complete)
- Go/No-Go: Interpret intermediate chemical species in bulk MgB₂, Mg(BH₄)₂, and partially (de)hydrogenated samples, and show < 1 eV agreement between measured and computed XAS/XES spectra (complete)
- Compute thermodynamics of surfaces and interfaces of nanoscale MgB₂/Mg(BH₄)₂ and measure absorption/desorption rate (75% complete)
- Establish modeling framework for surface chemical reactions and calculate
 surface-dependent thermodynamics, migration, and dissociation (25% complete)

On track to meet all key FY16 milestones

^ohase II

Additional key technical accomplishments this year

- Showed that high-pressure hydrogenation of MgB₂ can lead to direct conversion to Mg(BH₄)₂, suggesting it is possible to suppress intermediates
- Compared spectroscopic data with *ab initio* computations and kinetic analysis to show that hydrogenation of MgB₂ likely initiates at interfaces and defect sites
- Demonstrated size-selective synthesis of MgB_2 nanoparticles with diameter < 10 nm

Accomplishment: Analysis of initial MgB₂ uptake kinetics

Analysis reveals multiple barriers corresponding to processes governing initial hydrogenation

Combined soft X-ray spectroscopy (+FTIR, NMR) with computational spectroscopy to probe mechanism of initial hydrogenation prior to any phase change

Accomplishment: Spectroscopy to probe local chemistry

After controlling for oxidation, no significant changes are observed in XAS/XES upon initial hydrogenation of MgB_2 up to 0.85 wt. % H ($MgB_2H_{0.39}$)

XAS total fluorescence yield, ~300 nm penetration

- If MgB₂ becomes MgB₁₂H₁₂ or dispersed B-H bonds, expect 19.5% reduction in (*), inconsistent with the spectra
- Consistent with conversion into $Mg(BH_4)_2$ (4.9% expected reduction) or MgH_2 (almost no expected effect)

Relatively few B atoms are hydrogenated, suggesting a local concentration of highly coordinated BH_x or MgH₂ rather than MgB₁₂H₁₂ or uniformly dispersed B-H bonds

Accomplishment: Energetics of hydrogen in MgB₂

Computed binding energetics of hydrogen at sites in MgB₂

Unfavorable thermodynamics of dissociated hydrogen in bulk MgB₂ suggests hydrogen migrates to surfaces and interfaces

Accomplishment: Computational spectroscopy

Computed XAS spectra confirm H is not bulk-intercalated and does not further disrupt boron p_{xy} orbitals, suggesting it attacks high-energy defects and strained B-B bonds

12

Accomplishment: FTIR supports proposed uptake mechanism

FTIR spectra show features similar to $Mg(BH_4)_2$ but no $MgB_{12}H_{12}$ or B-H, supporting XAS interpretation of highly selective hydrogenation of B atoms concentrated at interfaces

Suggests direct pathway for formation of BH₄-like species via hydrogenation of MgB₂ proceeding from interfaces and grain boundaries even at low pressure (140 bar)

Accomplishment: Interpreting intermediates (Go/No-Go)

Compared calculations to measured spectra to aid interpretation of intermediates based on library of reference computed spectra for Mg-B-H compounds (completes Go/No-Go)

Agreement between reference and computed spectra assures confidence in predicted models, which will be used to aid interpretation of (de)hydrogenation intermediates

Accomplishment: Hysteresis in reaction pathway

XAS and FTIR near half hydrogenation (7 wt.% H) show results consistent with lower hydrogenation, with $Mg(BH_4)_2$ -like features and no closoborane intermediates

Collaborating with T. Autrey and M. Chong (PNNL) who are providing other suspected intermediates for us to characterize for deeper (de)hydrogenation studies: Et_4N salts of $B_{10}H_{10}$, B_3H_8 , B_9H_{14} and $B_{11}H_{14}$

Differences between direct uptake pathway and known desorption pathway (via intermediates) highlight the solid-state nature of the MgB₂ hydrogenation reaction

Accomplishment: Local chemical pathways for BH_x formation

High-temperature ab initio molecular dynamics reveals possible chemical pathways for H diffusion and formation of B_xH_v intermediates upon initial dehydrogenation

computed barrier of > 2 eV for vacancy-mediated bulk transport in $Mg(BH_4)_2$ (see C. Wolverton, 2013 Annual Report). More compatible with lower-barrier isotope-exchange measurements (Hagemann et al., JPCC 114, 10045 (2010))

Low-barrier H₂ formation and H transport can initiate at surfaces and interfaces of Mg(BH₄)₂ that contain undercoordinated BH₄⁻ units with higher entropy

Accomplishment: Improved thermodynamic predictions

Understanding reaction pathway and kinetics requires reconciliation of discrepancies between experiment and theory for stability of reaction intermediates

Why do theoretical and experimental pathways differ (e.g., stability of $Mg(B_3H_8)_2$)?

- 1) Anharmonic contributions to free energy (due to B_xH_y molecular modes)
- 2) Microstructure (interface/surface contributions)
- 3) Kinetic differences (nucleation, transport, or chemical)
- 4) Non-crystalline phases (molecular defects vs. amorphous vs. polycrystalline)

We have been evaluating possible relevance of each of the above factors, with plans to inform and validate models with nanoparticle experiments in Phase II

Accomplishment: Finite-temperature anharmonic contributions

Computed atom-resolved dynamical contributions based on ab initio molecular dynamics, including oft-neglected anharmonic contributions

Anharmonic modes contribute anywhere between 1 and 12 kJ/mol to the free energy, and preliminary investigations indicate that values for surfaces may be even higher

Accomplishment: Understanding phase nucleation

Computed nucleation barriers for key reaction phases to assess role of phase nucleation in (de)hydrogenation rate

Stress-free nucleation barriers

Phase	Barriers in meV (elemental reference)	Barriers in meV at heterogeneous interface		
γ-Mg(BH ₄) ₂	0.6	0.1		
β -Mg(BH ₄) ₂	7.0-54.7	1.0-8.0		
$MgB_{12}H_{12}$	0.02	0.03		
MgB ₂	624.3-961.7	-		
MgH ₂	115.2-154.8	0.2		

Based on Wulff construction; ranges are Mg/B rich limits Volume expansion suggests internal stress will play significant role

Reaction			Volume expansion (%)		
$MgB_2 + x H_2$	\rightarrow	γ-Mg(BH ₄) ₂	+469%		
$MgB_2 + x H_2$	\rightarrow	β -Mg(BH ₄) ₂	+334%		
$MgB_2 + x H_2$	\rightarrow	1/6 MgB ₁₂ H ₁₂ + 5/6 MgH ₂	+160%		
1/6 MgB ₁₂ H ₁₂ + 5/6 MgH ₂	\rightarrow	γ-Mg(BH ₄) ₂	+119%		
1/6 MgB ₁₂ H ₁₂ + 5/6 MgH ₂	\rightarrow	β -Mg(BH ₄) ₂	+67%		

Working to include stress and interfacial penalties to predict microstructure by integrating into phase-field model and comparing against uptake kinetics in nanoparticles

Accomplishment: Phase fraction predictions of Mg-B-H

As proof-of-concept, tested size-dependent phase fraction predictions for $MgB_2/MgB_{12}H_{12}/Mg(BH_4)_2$ three-phase system using model core-shell microstructure (no entropy yet)

 $Mg(BH_4)_2 \rightarrow (1/6)MgB_{12}H_{12} + (5/6)MgH_2 + (13/6)H_2 \rightarrow MgB_2 + 4H_2$

Tests show reaction pathways can be altered by controlling particle sizes

Future work will focus on alternative microstructures with interfacial transport pathways, as well as incorporating fully anharmonic entropy

Accomplishment: Initial phase-field kinetics simulation

Demonstrated feasibility of phase-field kinetics simulation based on assumed free energy surface and three-phase model (MgH₂, Mg(BH₄)₂, MgB₁₂H₁₂)

 $6Mg(BH_4)_2 \rightarrow MgB_{12}H_{12} + 5MgH_2 + 13H_2$

Considered two (de)hydrogenation stages:

- Mg-MgH₂ (interstitial hydride model^[1])
- Mg(BH₄)₂-MgB₁₂H₁₂-MgH₂ (multiphase conversion model^[2])

Decomposition of $Mg(BH_4)_2$ into $MgB_{12}H_{12}$ and MgH_2 within phase-field simulations

Will parameterize with accurate free energy surface generated by combining first-principles DFT with experimental uptake curves

[1] T. G. Voskuilen et al., Int. J. Hydrogen Energy, 38, 7363 (2013)
[2] H.-C. Yu et al., J. Phase Equilib. Diff. (2015)

Accomplishment: Nanoparticle synthesis

Demonstrated synthesis of MgB_2 nanoparticles with small diameter (< 10 nm)

Size-selective nanoparticles are key to validating and informing models and proposed mechanisms and necessary for progressing to Phases II and III of the project

• Our approach uses **surfactant-assisted ball milling** combined with Stavila Stripping Method for surfactant removal and solvent dispersion to separate out size fractions

2.91 Å 2.12 Å -111 MgB2 (2.13) 1.74 Å – 002 MgB2 (1.76) 1.52Å – 110/120 MgB2 (1.54) 1.24Å – 021 MgB2 (1.25) 1.14Å – 210 MgB2 (1.16) 0.954Å

STEM Electron Diffraction shows crystalline MgB₂ with some impurities

Mostly small (< 10 nm dia.) particles are being made but there is a distribution

Working to narrow size distribution and improve purity of synthesized NPs by altering milling parmeters and solvent dispersion steps

Collaborations

Collaborations are crucial for realizing theory/characterization/synthesis partnership

Ab initio modeling/multiscale integration

- Dr. Brandon Wood (PI, LLNL)*
- Dr. Keith Ray
- (LLNL)*

Dr. ShinYoung Kang (LLNL)*

Prof. Katsuyo Thornton (Univ. Michigan)**

Dr. Tae Wook Heo (LLNL)*

Nanoparticle synthesis & testing

Dr. Vitalie Stavila (Sandia)**

Characterization

- Dr. Lennie Klebanoff (Sandia)**
- Dr. Jonathan Lee (LLNL)*

Additional collaborations

- Neutron diffraction/spectroscopy: T. Udovic (NIST; within DOE Hydrogen Program)
- Borohydride chemistry and NMR: T. Autrey and M. Bowden (PNNL; H₂ storage characterization group)
- Kinetic Monte-Carlo for solid-state diffusion: H. Kreuzer (Dalhousie U.)
- HyMARC collaborations: XAS/XES and computational spectroscopy (LBNL); free energy analysis (LLNL); phase fraction prediction/phase-field codes (LLNL); high-pressure hydrogenation (SNL); nanoconfining carbons (LLNL)
- Ultra-high-pressure synthesis of Mg-B-H materials (D. Novella, LLNL)

Remaining challenges/barriers & mitigation strategies

- Nanoparticle agglomeration may make size-dependent assessment difficult
 - Will compare nanoparticle results against the more traditional nanoconfinement approach using nanoconfining media provided through HyMARC
- Slow hydrogenation kinetics limits data collection
 - Take advantage of slow kinetics to inform models with ex situ characterization of samples with arrested (de)hydrogenation
- Need techniques to bridge time scales associated with kinetic processes
 - Leveraging HyMARC capabilities to apply multiscale transport formalism
- Phase diagram for the Mg-B-H system is highly complex
 - Developing multi-phase framework that can handle multiple intermediates
 - Short-lived intermediates may safely be neglected
- Free energy surface may depend on temperature
 - Ab initio molecular dynamics at various temperatures will help elucidate key thermal effects and anharmonic processes
 - Models are flexible enough to accept direct experimental inputs from rate analysis
- No direct knowledge of interfacial structure
 - Will continue to engage HyMARC in an attempt to image nanoparticle interfaces without sample damage
 - Adapting HyMARC statistical models that examine consequences of interface energy assumptions on overall predicted phase pathway

Remaining FY16/FY17 milestones and proposed completion

Milestone	Description		
1	Compute thermodynamics of surfaces and interfaces of nanoscale $MgB_2/Mg(BH_4)_2$ and measure desorption/absorption rate*	Q3 FY16	
2	Establish modeling framework for surface chemical reactions and calculate surface-dependent thermodynamics, migration, and dissociation	Q4 FY16	
G/NG #2	G/NG for Phase II: Demonstrate 75% agreement between model predictions and observations of bulk phase fractions and demonstrate scalable synthesis of $MgB_2/Mg(BH_4)_2$ nanoparticles in 50 g quantities	Q1 FY17	
3	Identify rate-limiting process in (de)hydrogenation of nanoscale $Mg(BH_4)_2/MgB_2$	Q2 FY17	
4	Compute kinetic improvement upon nanosizing/catalyzing Mg-B-H, and deliver three-phase kinetic model that shows 50% agreement with experimental (de)hydrogenation rates	Q3 FY17	

*surfactant-assisted ball milled MgB₂ will be compared with nanoconfined using frameworks from HyMARC

Future work focuses on nanoparticle measurements and kinetic modeling

Technology transfer activities

• Viktor Balema (Sigma-Aldrich) is kept informed of our research progress, which will foster commercialization of viable new materials

Summary

Key Concepts:

- Integrated theory/synthesis/characterization framework aims to understand and improve Mg(BH₄)₂ by comparing bulk properties with effects of nanostructuring and doping
- Unraveling kinetics and reaction pathways for bulk and nanoparticle Mg(BH₄)₂ ↔ MgB₂ + 4H₂ interconversions relies on understanding both local chemistry and solid-state phase transformation mechanisms at multiple scales
- Knowledge gained demonstrates the relevance of chemical and transport processes at interfaces, suggesting the possibility of morphology/microstructure engineering as a viable improvement strategy
- Complete **synthesis & characterization** approach directly informs and validates theoretical models with respect to reaction pathways, intermediates, kinetics

Impact:

- Focuses on material with potential to meet **ultimate DOE hydrogen storage targets**
- Goes beyond ideal thermodynamic modeling to directly target kinetics in a comprehensive way and address challenges of "real" materials
- Understanding limitations & sensitivities could lead to Mg(BH₄)₂ particles with optimized morphology and composition for favorable kinetics
- Knowledge gained can be applied to other complex hydride candidates

Technical backup slides

Accomplishment: Spectroscopy to probe local chemistry

Oxidation was found to be an issue, which may explain heterogeneous surface kinetics

- Oxidation increases with time
- Established protocols to minimize oxidation by using fresh samples and proper handling
- Surface oxidation cannot be entirely eliminated

Care must be taken to minimize oxidation, and its effects must be considered

Backup slide: New protocols for largely minimizing oxidation

XES and XAS measurements (both TEY and TFY) show that one can get meaningful spectra with high surface sensitivity using these protocols with manageable levels of surface oxide

- X-Ray Emission Spectra (XES)
- (1) Use freshly (< 1 week) prepared samples if possible.
- (2) Store samples in glove box < 0.5 ppm H_2O
- (3) Transport samples under Ar in hermetically sealed double envelopes
- (4) Load into the spectrometer vacuum system under a UHP argon environment in a glove bag with humidity meter (can detect 25 ppm water), or in a portable load lock.
- (5) Minimize transfer time to spectrometer load lock to 15 mins or less.
- (5) Pump down (from argon) to $<10^{-7}$ Torr in < 1 hr.
- (6) Conduct XES/XAS measurements at ~ 10⁻⁹ Torr

Backup slide: Procedure for making MgB₂ nanoparticles

Surfactant – assisted Ball Milling: Y. Wang et al. Nanotechnology 18, 465701 (2007).

Typical Procedure:

- Combine high-purity MgB₂ with heptane, oleic acid and oleyl amine.
- 2. Use a ZrO_2 or WC milling pot.
- 3. Ball mill for 5 20 hours.
- 4. Disperse product in heptane, filter out insolubles (bulk particles).
- 5. Centrifuge at 5000 rpm for 25 minutes, producing deposit and remaining solution.
- 6. Remove material that deposits (medium size NPs (> 10 nm) coated with surfactant)
- Recover material that remains in solution (NPs < 10 nm dia. coated with surfactant) with EtOH wash, collect depositing NPs (<10 nm).

Backup slide: Surface energies computed at 0 K

Phase	Surface	Surface en dipole corre At Mg-rich limit	ergies w/o ection (J/m²) At Mg-poor limit	Phase	Surface	Surface er dipole corr At Mg-rich limit	nergies w/o ection (J/m² At Mg-poor limit
γ -Mg(BH ₄) ₂	{100} Mg rich	1.89	2.22	MgB ₂	{1–100} Mg rich	1.60	1.91
	{100} BH ₄ rich	(in process)	(in process)		{1–100} B rich	2.98	2.68
	{111} Mg rich	0.74	0.96		{1-100} stoi.	4.04	4.04
	{111} stoi.	0.22	0.22		{0001} Mg full	0.65	1.07
	{111} BH ₄ rich	-0.07	-0.30		{0001} Mg line	1.82	1.82
	{110} stoi.	0.22	0.22		{0001} Mg dia	1.82	1.82
β -Mg(BH ₄) ₂	{100} Mg rich	0.46	0.64		{0001} B full	3.17	2.76
	{100} BH ₄ rich	0.11	-0.07		{0001} B line	5.18	5.18
	{010} stoi.1	0.57	0.57		{0001} B dia	7.77	7.77
	{010} stoi.2	3.43	3.43		{0001} B ziazag	2.18	2.18
	{001} Mg rich	0.59	0.80		{11-20} stoi.	2.40	2.40
$MgB_{12}H_{12}$	{100} stoi.	0.13	0.13		{1-101} stoi.	1.80	1.80
	{010} stoi.	0.01	0.01	MgH ₂	{100} Mg rich	4.26	4.58
	{001} Mg full	1.44	2.45		{100} H rich	1.74	1.43
	{001} Mg line	0.15	0.15		{100} stoi.	0.94	0.94
	{001} Mg para	0.12	0.12		{001} full	0.84	0.84
	{001} BH full	-0.11	-1.10		{001} Mg line	1.28	1.06
	{001} BH line	0.65	0.65		{001} Mg square	0.82	0.61
	{001} BH zigzag	0.26	0.26		{001} B line	2.67	2.89
					{001} B square	4.10	4.31

{001} B band

4.01

4.23

Backup slide: Defects in hydrogen-containing phases

Computed energies of H-related defects in parent phases to understand intermediate chemical reaction pathways in hydrogen-containing phases (Mg(BH₄)₂, MgH₂, MgB₁₂H₁₂)

Differences between defect chemistries at H-poor and H-rich interfaces may be relevant for understanding hysteresis in reaction pathway