High-capacity Hydrogen Storage Systems via Mechanochemistry

PI :Vitalij K. Pecharsky Co-PIs: Duane Johnson, Marek Pruski, Shalabh Gupta (Ames Laboratory) and Eric Majzoub (UMSL)

Annual Merit Review, 2016

Project ID # ST119

June 8, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY

Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358

Overview

Timeline

- Start Date: July 1, 2015
 Phase 1: August 31, 2016*
- End Date: June 30, 2018
- % Complete: 30 %

*Project continuation and direction determined annually by DOE

Budget

- Total Project budget: \$1.225 M
 - Total Recipient Share: \$0.025 M
 - Total Federal Share: \$ 1.2 M
 - Total funds received: \$200K (FY15), \$400K (FY16)
 - Total DOE Funds Spent (to date): \$225K
 - Subcontract UMSL: \$58,000 (Phase I)

Barriers addressed

- (A) System Weight and Volume
- (B) System Cost
- (O) Lack of Understanding of

hydrogen Chemisorption

Partner(s)

• UMSL: Eric Majzoub (Computational effort)

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY

Relevance/Objectives

Main Focus: Development of Novel High H-capacity Si-based borohydrides and composites

- **Objectives:** Development of low-cost, high-performance hydrogen storage materials based on :
- (1) Silicon-borohydride hypersalts Si-based borohydride materials are predicted to have borderline thermodynamic stability. We will use stabilization strategies based on hypersalt formation using alkali and alkaline-earth cation additions to bring the enthalpy of desorption into the 20–30 kJ/mol H₂ range.
- (2) Borohydride/graphene composites We will develop hydride/graphene nanocomposites that utilize the high thermal conductivity and unique properties of graphene such as high surface area and excellent thermal and chemical stability.

The common thread is an efficient and scalable mechanochemical approach to the synthesis of functional hydrogen storage materials.

Relevance/Objectives

- Borohydrides have largest gravimetric density (GD) among all known hydrides: LiBH₄, Mg(BH₄)₂, Al(BH₄)₃...
- Like nearly all other complex hydrides they suffer from poor kinetics and limited reversibility
- Structurally diverse: provide numerous opportunities for tuning
- Offer opportunity for stabilization
 via hypersalts and adduct formation
- No Si-based borohydrides reported;
 Si and B are abundant and inexpensive

Al₃Li₄(BH₄)₁₃ T_d=~90 °C Lindemann et al. IJHE, 2013

4

Approach - Theory and Computation Subtasks 1.4, 3.3: PEGS+DFT Hypersalt Stability Screening

Computational Methods:

- Crystal structure candidates generated using the prototype electrostatic ground states (**PEGS**) method [PRB, 77, 104115 (2008)]
- Thermodynamic properties and decomposition pathways predicted using multi-gas canonical linear programming (MGCLP) [J. Phys. Chem. C., 118, 14759 (2014)]
- Density functional theory (**DFT**) using the VASP code

Phase 1 approach and goals:

- Determine the preferred oxidation state for Si in Si(BH₄)_n for n={1,2,3,4} using nominal Si oxidation state in PEGS
- Determine relative stability of Si(BH₄)_n phases
- Use information from Si(BH₄)_n phases in hypersalt candidate PEGS+DFT calculations
- Determine relative stability of alkali and alkaline earth hypersalts and search for stable compounds

Approach - Synthesis and Characterization; Subtasks 1.1–1.3

1. Synthesis:

- Mechanochemistry (Dry and liquid-assisted)

2. Characterization:

- Powder X-ray diffraction

-1D and 2D Solid-state NMR of spin-¹/₂ (¹H, ²⁹Si) and quadrupolar (⁷Li, ¹¹B, ²³Na) nuclei, including highly sensitive DNP SSNMR

Accomplishments - Computational Screening

Preferred Oxidation State is Si²⁺ for PEGS-generated Si(BH₄)_n Structures

DFT- calculated Born effective charges and formation enthalpies for borohydride structures in the Si-B-H system. PEGS structures generated assuming silicon charge states from +1 to +4. Charges are in units of the electron charge *e*, and enthalpies in kJ/mol.

Structure	$Z_B^{ m eff}$	Z_{H}^{eff}	$Z_{Si}^{ m eff}$	ΔH_f^0 /atom
Si(BH ₄)	+0.59	-0.49	+2.31	-282
Si(BH ₄) ₂	+0.20	-0.18	+1.95	-287
Si(BH ₄) ₃	+0.15	-0.14	+2.36	-276
Si(BH ₄) ₄	+0.13	-0.17	+2.25	-275

- There is no stationary point for the change in Gibbs free energy for the hypothetical reactions given by Si(BH₄)_n → Si + n B + 2n H₂. No enthalpy change can be calculated.
- Compare relative stability using energy (ΔE) and Helmholtz free energy ($\Delta F = \Delta E T \Delta S$) at T=300 K.
- Least stable to most stable: Si⁺¹(BH₄) < Si⁺³(BH₄)₃ < Si⁺⁴(BH₄)₄ < Si⁺²(BH₄)₂

Accomplishments - Si(BH₄)₄ (Theo. 18.4 wt. % H₂)

$4\text{LiBH}_4 + \text{SiCI}_4 \rightarrow 4\text{LiCI} + \text{Si}(\text{BH}_4)_4 \uparrow$

- 2. No Si seen on SSNMR: $Si(BH_4)_4$ or SiH₄ escapes as gas? (analysis of gases planned when new vials ready)
- Distortion of $[BH_{4}]^{-}$ group 3. 4. T_d decrease LiBH, ntensity [BH₄]⁻ LiBH, [BH₄]-B.M. 12h -50 150 100 50 0 -50 -100 -150 150 100 50 0 -100 -150 ¹¹B DPMAS ¹¹B{¹H} CPMAS 27 29 28 30 Decomp. Temp. Onset, °C Angle 20, degs. System **LiBH**₄ 320 4LiBH₄+SiCl₄ (B.M. 3h) 240

48 h

18 h

6 h

31

LiCI

Accomplishments - Computational Screening

Alkali and Alkaline Earth Hypersalts Show Metastability Within DFT Errors

Total DFT energy (static + dynamic) and Helmholtz free energy changes for the decomposition reactions of metastable hypersalts of $MSi(BH_4)_3$ compounds for M={Li,Na,K} for decomposition into elemental Si, B, H₂ (gas), and either M or MH at 300 K. Units are kJ/mol H₂.

Compound	Μ, ΔΕ	Μ, ΔF	ΜΗ, ΔΕ	MH, ΔF		
LiSi(BH ₄) ₃	13	-26	0	-39		
NaSi(BH ₄) ₃	14	-25	7	-32		
KSi(BH ₄) ₃	22	-15	16	-21		
LiNaSi(BH ₄) ₄	31	-7	17	-20		
LiKSi(BH ₄) ₄	36	-1	24	-14		
NaKSi(BH ₄) ₄	36	-1	29	-9		
Compounds with divalent alkaline earth metals						
MgSi(BH ₄) ₄	4	-31	-4	-37		
CaSi(BH ₄) ₄	29	-10	8	-29		
LiMgSi(BH ₄) ₅	25	-13	13	-24		
NaMgSi(BH ₄) ₅	18	-19	10	-26		

• Nominal Si²⁺ yields most stable candidates (checked against Li, Na hypersalts)

• $\Delta E > 0$ for all hypersalts with ΔF showing possible stability within DFT error (+/- 10 kJ/mol)

Best candidates include LiKSi(BH₄)₄ and NaK(BH₄)₄

Accomplishments - Systems Investigated

Target compound	H ₂ , wt. % (Theo.)	Reactions examined
Si(BH ₄) ₄	18.4	SiCl ₄ + 4LiBH ₄ [*]
LiSi(BH ₄) ₅	18.4	a) $4LiBH_4 + TBABH_4 + SiCl_4$ b)(a) + Li[Al{OC(CF ₃) ₃ } ₄ SiS ₂ + 5LiBH ₄
(NH ₄)Si(BH ₄) ₅	20.0/16.7	NH ₄ CI+5LiBH ₄ +SiCl ₄
MgSi(BH ₄) ₆	17.1	$\label{eq:mgSiF_6+6LiBH_4; MgSiF_6+6NaBH_4} \\ \mbox{MgCl}_2+6LiBH_4+SiCl_4 \\ \mbox{MgCl}_2+6NaBH_4+SiCl_4 \mbox{Mg(BH_4)}_2+4NaBH_4+ \\ \mbox{SiBr}_4 \\ \end{tabular}$
AISi(BH ₄) ₇	17.8	$\label{eq:algorithm} \begin{array}{l} AlCl_3 + 3LiBH_4 + SiCl_4 \\ AlBr_3 + 3LiBH_4 + SiBr_4 \\ AlCl_3 + 7LiBH_4 + SiCl_4 \ AlBr_3 + 7LiBH_4 + SiBr_4 \\ AlCl_3 + 7NaBH_4 + SiCl_4 \ AlCl_3 + 3NaBH_4 + SiCl_4 \\ AlBr_3 + 7NaBH_4 + SiBr_4 \end{array}$

* Promising reactions discussed in this presentation are shown in yellow.

Accomplishments - $AISi(BH_{a})_{7}$ (Theo. 17.5 wt. %)

$LiBH_4$ - AlHal₃ - SiHal₄ systems (Hal=Cl, Br)

XRD:

"LiAISiCI₅(BH₄)₃" (Sp. gr. Ccca) 4.2 wt % H₂ "LiAISiBr₅(BH₄)₃" (Sp. gr. Ccca) 2.4 wt % H₂

NMR:

- Presence of SiCl₄
- 5-coordinated AI
- BH_4^- group in the resulting compounds

Accomplishments - AISi(BH₄)₇ (Theo. 17.5 wt. %)

Candidates for Hypersalts With Al Require Nominal Si^{+3,+4} for Stable (BH₄)⁻ Anions

- PEGS prototypes generated for AlSiCl_n(BH₄)₃ for n={1,2,3,4} and for AlSiLiCl_n(BH₄)₃ with n={2,3,4,5} to investigate charge states of Si.
- Nominal charge
- Si⁺¹: DFT-relaxed structures result in unstable BH₄ anions, splitting into BH₃+H with Si-H coordination of the disconnected hydrogen.
- Si⁺²: unstable BH₄ anions or stable but highly distorted BH₄
- Si⁺³: <u>stable BH₄</u> anions, layered structure with {SiCl₄, BH₄} and {Al, Cl, Li, BH₄}
- Si⁺⁴: <u>stable BH₄</u> anions, layered structure containing planar Al(BH₄)₃ with a bidentate orientation of the BH₄ to Al, and SiCl₄ tetrahedra

Accomplishments - AISi(BH₄)₇ (Theo. 17.5 wt. %)

MGCLP Calculations for Li-Al-Cl-(BH₄) System

Accomplishments - NH₄Si(BH₄)₅ (Theo. 20.0 wt. %)

Anticipated: $5LiBH_4 + NH_4CI + SiCI_4 \rightarrow 5LiCI + NH_4Si(BH_4)_5$

Accomplishments - MgSi(BH₄)₆ (Theo.16.9 wt. %)

Accomplishments - LiSi(BH₄)₅ (Theo. 18.4 wt. % H₂)

Step 1 (Mechanochemical or solution synthesis): 4LiBH₄ + TBABH₄ + SiCl₄ \rightarrow 4LiCl \downarrow + TBASi(BH₄)₅ Step 2 (Reaction in organic solvent - planned): TBASi(BH₄)₅ + Li[Al{OC(CF₃)₃}₄ \rightarrow LiSi(BH₄)₅ \downarrow + TBA[Al{OC(CF₃)₃}₄

- Fast reaction; completed even by mixing of the components in a SiCl₄ solution
- T_d (*TBASi(BH*₄)₅) ~128°C
- Gas release (vol.%): H₂ (~86), CH₄ (~1), C₄H₁₀ (~12), C₂NH₇ (~1), no B₂H₆

²⁹Si{¹H} CPMAS

-150

Ð

⊖ BH₄

Synthesis of – SiS₂

Step 1 (*Cryo-milling in* N_2 *atmosphere*):

Si + 2S \rightarrow homogeneous mixture

Step 2 (Hold at T=390°C for 12 hours, S in excess):

Si + 2S \rightarrow SiS₂

Accomplishments - $LiSi(BH_4)_5$ (Theo. 18.2 wt. % H₂)

Accomplishments - Li₂SiS₂(BH₄)₂ (Theo. 6.2 wt. % H₂)

MGCLP Calculations for Li-Si-S-(BH₄) System Indicate Stable Phase in $\text{Li}_2\text{SiS}_2(\text{BH}_4)_2$ with $\Delta H = 32$ kJ/mol H₂

$Li_2SiS_2(BH_4)_2 \rightarrow 2B + Li_2S + \frac{1}{2}Si + \frac{1}{2}SiS_2 + 4H_2$

- ΔH = 32 kJ/mol H₂
- $T_c = -33 \, ^{\circ}C$

6.2 wt.% H₂

yellow=S

green=Li

blue=Si

Summary

Task 1; Subtasks 1.1-1.3- Synthesis and characterization of Novel Silicon-based Borohydrides via Hypersalt Stabilization

- Mechanochemical reactions in 20+ systems studied
- □ Si/Cat/B/H hypersalts can be prepared mechanochemically
- □ Hal/S can stabilize silicon borohydrides
- \Box T_d of hypersalts meet the DOE targets

 $\Box \text{ No } B_2 H_6$

Tasks 1 and 3; Subtasks 1.4-3.3- Screening candidate Si⁴⁺ and Si²⁺ hypersalt compounds using PEGS

☐ 10,000+ structure candidates examined by PEGS and DFT

Remaining Challenges and Barriers

- Confirmation of product identity- composition and structure
- Purification of as-synthesized borohydride salts
- □Volatility of SiHal₄ (hard to control stoichiometry)
- Pool of Si precursors is limited
- □ No precursors with Si²⁺

Future plans

□ Confirmation of identity of obtained mixed silicon borohydrides

- Purification from byproducts
- □ Ab-initio solution of available powder diffraction data aided by PEGS/DFT
- □ Synthesis of single crystals
- Determine reversibility of hydrogen in observed systems
- Synthesis of hypersalts by using the M-Si-Hal materials as a source of Si (M is metal or NH₄⁺).
- □ Mechanochemistry at liquid nitrogen temperature (cryo-milling)
- DP method will be applied for quantitative analysis of synthesized hypersalts
- Computational and preliminary synthetic attempts will be made to evaluate stability of Si-borohydrides on graphene surface.

Backup Slides

Backup slides-Full list of systems Investigated

Target compound	H ₂ , wt. %	Reactions examined
Si(BH ₄) ₄	18.4	SiCl ₄ + 4LiBH ₄
LiSi(BH ₄) ₅	18.4	a) $4LiBH_4+TBABH_4+SiCl_4$; b) + Li[Al{OC(CF ₃) ₃ } ₄ SiS ₂ + 5LiBH ₄
Li ₂ Si(BH ₄) ₅	17.3	Li ₂ SiF ₆ +6LiBH ₄ ; Li ₂ SiF ₆ +6NaBH ₄
Na ₂ Si(BH ₄) ₆	14.8	Na ₂ SiF ₆ +6LiBH ₄ ; Na ₂ SiF ₆ +6NaBH ₄
K ₂ Si(BH ₄) ₆	12.4	K ₂ SiF ₆ +6LiBH ₄ ; K ₂ SiF ₆ +6NaBH ₄
(NH ₄) ₂ Si(BH ₄) ₆	20.9/15.7	(NH ₄) ₂ SiF ₆ +6LiBH ₄ ; (NH ₄) ₂ SiF ₆ +6NaBH ₄
(NH ₄)Si(BH ₄) ₅	20.0/16.7	NH ₄ CI+5LiBH ₄ +SiCI ₄
MnSi(BH ₄) ₆	14.1	MnCl ₂ +6LiBH ₄ +SiCl ₄
MgSi(BH ₄) ₆	17.1	MgSiF ₆ +6LiBH ₄ ; MgSiF ₆ +6NaBH ₄ ; MgCl ₂ +6LiBH ₄ +SiCl ₄ ; MgCl ₂ +6NaBH ₄ +SiCl ₄ ; Mg(BH ₄) ₂ +4NaBH ₄ +SiBr ₄
FeSi(BH ₄) ₆	14.0	FeCl ₂ +6LiBH ₄ +SiCl ₄ ; FeCl ₂ +6NaBH ₄ +SiCl ₄
CaSi(BH ₄) ₆	15.4	CaCl ₂ +6LiBH ₄ +SiCl ₄
AlSi(BH ₄) ₇	17.8	$AICI_{3}+7LiBH_{4}+SiCI_{4}; AICI_{3}+3LiBH_{4}+SiCI_{4};$ $AIBr_{3}+7LiBH_{4}+SiBr_{4}; AIBr_{3}+3LiBH_{4}+SiBr_{4};$ $AICI_{3}+7NaBH_{4}+SiCI_{4}; AICI_{3}+3NaBH_{4}+SiCI_{4};$ $AIBr_{3}+7NaBH_{4}+SiBr_{4}$

Approach

Computational Screening:

Prototype Electrostatic Ground State Crystal Structure Prediction (PEGS)

Energy functional:

$$\sum_{i < j} \left(\frac{Z_i Z_j}{r_{ij}} + \frac{1}{r_{ij}^{12}} \right)$$

- Simulated annealing Monte Carlo energy minimization
- Generally obtains ground state and polymorph structures for complex ionic hydrides
- Majzoub & Ozolins, Phys. Rev. B, 77, 104115, (2008)

PEGS Structures

Examples: PEGS Finds High-symmetry Structures for Si(BH₄)₄ and NaSi(BH₄)₅

Si(BH₄)₄ I-42m (#121)

NaSi(BH₄)₅ I-4 (#82)

Atom legend - Yellow: silicon; Brown: hydrogen; Orange: sodium

Milestones and Performance

Milestones and Go/No Go Decision

Task	Task or Subtask Title	Milestone # (Go/No-Go Decision Point #	Milestone Description (Go/No-Go Decision Criteria)	Anticipated Date (Months)			
		Phase	1 (0–12 month)				
1	Screening, Synthesis and characterization of Novel Silicon-based Borohydrides via Hypersalt Stabilization	M1.1	Calculate thermodynamic stability of Si ⁴⁺ -borohydride hypersalts with either alkali or alkaline earth cation additions	3			
		M1.2	Demonstration of Si-borohydride formation through metathesis reaction	6			
		M1.3	Computational identification of candidate Si-borohydride hypersalts for synthesis	9			
2	Graphene/hydride composite-based storage of metal hydrides	M1.4	Preparation of graphene/hydride composites with LiBH ₄ via mechanochemistry	12			
		D1	Demonstrate that novel hypersalt Si-borohydrides can be stabilized and may be tailored to exhibit desorption temperatures below 200 °C with a minimum desorption capacity of 5 wt.% below 200 °C and 10 wt % wt. % below 350 °C	12			
		Phase 2	2 (12–24 month)				
3	Novel Silicon-based Borohydrides via Hypersalt Stabilization	M2.1	Demonstrate reversibility of a Si-borohydride hypersalt candidate	15			
4	Graphene/hydride composite-based storage of complex metal hydrides	M2.2	Demonstrate reversibility of a graphene/hydride composite	18			
		M2.3	Characterize graphene/hydride interactions using DNP SSNMR	21			
		M2.4	Calculate thermodynamic stability of graphene/hydride composites to minimize composite degradation	24			
		D2	Demonstrate at least one Si-borohydride prepared in phase 1 and/or at least one graphene/hydride composite with no less than 5 wt. % reversible capacity between room temperature and 300 °C and reversibility of 50 % or more of the initial H ₂ content.	24			
Phase 3 (24–36 month)							
5	Novel Silicon-based Borohydrides via Hypersalt Stabilization	M3.1	Optimize kinetics of Si-borohydrides through addition of transition metal dopants	27			
6	Graphene/hydride composite-based storage of complex metal hydrides	M3.2	Optimize the kinetics and thermodynamics of composites using NMR characterization of the interactions	30			
		M3.3	Demonstrate reversibility of Si-BH hypersalt with 11+ wt. % capacity and optimize thermodynamics	33			
		M3.4	Demonstrate reversibility of graphene/hydride composite with 10+ wt. % capacity and optimize thermodynamics	36			

Milestones and Performance

Task	Task or Subtask Title	Milestone # (Go/No-Go Decision Point #	Milestone Description (Go/No-Go Decision Criteria)	Anticipated Date (Months)	% complete
		Phase 1	(0–12 month)		
1	Screening, Synthesis and characterization of Novel Silicon-based Borohydrides via Hypersalt Stabilization	M1.1	Calculate thermodynamic stability of Si ⁴⁺ -borohydride hypersalts with either alkali or alkaline earth cation additions	3	100
		M1.2	Demonstration of Si-borohydride formation through metathesis reaction	6	100
		M1.3	Computational identification of candidate Si- borohydride hypersalts for synthesis	9	100
2	Graphene/hydride composite-based storage of metal hydrides	M1.4	Preparation of graphene/hydride composites with LiBH ₄ via mechanochemistry	12	40
		D1	Demonstrate that novel hypersalt Si-borohydrides can be stabilized and may be tailored to exhibit desorption temperatures below 200 °C with a minimum desorption capacity of 5 wt.% below 200 °C and 10 wt % wt. % below 350 °C	12	100