Design and Synthesis of Materials with High Capacities for Hydrogen Physisorption

PI: Brent Fultz Department of Applied Physics and Materials Science California Institute of Technology June 8-9, 2016 Project ST120

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date August 1, 2015
- Project end date July 31, 2018
- Percent complete: 22%

Barriers

- Weight and volume of on board hydrogen storage systems
- Low temperature and low enthalpy of adsorption

Budget

Total project funding \$1M (3 yrs) Federal share \$1M
Funding for FY16 DOE share \$333k

Partners

Interactions/collaborations

T. Baumann, LLNL R.C. Bowman, Jr.

2

Why graphene instead of activated carbon?

Activated carbon can have higher

surface areas (>3100m²/g) but... zig-zag and armchair edge terminations have weaker

zig-zag armchair 500E Kynol ACF-10 (m²/g) 400 E Graphite interlayer spacing Area 300E Surface 200 100 0.4 0.8 1.2 1.6 Pore Width (nm) 1 nm

binding sites than graphene surface. Functionalization possible but less well-defined geometrically so less easy to interpret.

Graphene has a lower theoretical surface area (2630 m^2/g), but more regular for functionalization.

Commensurate $\sqrt{3}$ structure (LiC₆) or HC₃ => ~5.3 wt%. (39 g/L)

Incommensurate solid H₂ on graphite $=> \sim 7.7 \text{ wt\%}.$ (54g/L)

Capacity of Conventional Carbons

Rationale

• Single layer graphene is a platform with excellent surface-tovolume ratio -functionalize it.

• Synthesis and functionalization using

- graphite oxide chemical routes
- plasma physical approaches

Synthesis and Preparation

Oxygen Plasma Etching

Materials Characterization Infrastructure

Sieverts Apparatus

7

Detailed Project Plan

		SEM, Raman, XRD	TEM	FTIR	BET	Rapid Sieverts	Skeletal Density (He)*	Ref.	Progress
O ₂ plasma	graphene	×	×						80%
	bulk	×			×				
	graphene	×	×					<u> </u>	80%
Au, Cu plasma	bulk	×	×		×	×			
Chemical Synthesis-	modified Hummers	×	?					8	75%
graphite graphene oxide (GO)	varying starting graphite	×	?						25%
Chemical Synthesis- GO	hydrazine hydrate	×	×		×			'	
to rGO/graphene	microwave	×	×		×			4	50%
Chemical Synthesis-	KOH activation	×			×	×		4	50%
modified graphene	compressed	×			×	×		2, 3	
	Au (HAuCl ₄)	×	×			×		1	75%
Chemical Synthesis- metal incorporation	Cu (CuCl ₂)	×	×			×		7	15%
	Co, Ni, Zn?	×	×			×			
ALD	TiO ₂ (initial)	×	X	X	X	×		5	

* considered after evaulation of Rapid Sieverts

¹Koo et al. J. Mater. Chem. 2012, 22, 7130, ²Zhang et al. Carbon 2013, 54, 143, ³Ghaffari et al. Adv. Mater. 2013, 25, 4879, ⁴Kim et al. ACS Nano 2013 7 (8), 6899, ⁵Tiznado et al. Powder Tech. 2014, 267, 201, ⁶Wang et al. Carbon 2014, 76, 220, ⁷Tien et al. Carbon 2011, 49, 1550, ⁸Marcano et al. ACS Nano 2010, 4 (8) 4806

Sieverts Measurements

Sieverts Instrumentation at Caltech

(Above): A Sieverts method for rapid screening of samples by measuring fewer data points require 1/3rd the time for a full isotherm measurement. A single point measurement at 77K (red) agrees with a full isotherm measurement (black) on a test sample, PCONF4.

(Left): A third Sieverts system was obtained from JPL and brought to new lab-space at Caltech. 10 Caltech

Graphene Synthesis

- Our synthesis of graphene oxide and graphene using a modified Hummers method.
- Optimizing the synthesis process for further modification and functionalization:
 - Analyzing the effects of starting with different types of graphite materials (Superior Graphite, Sigma-Aldrich, Graphene Supermarket, etc.).
 - Varying the technique for reduction of graphene oxide to graphene.

Modified Hummers Method (Tour, et al.):

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, Improved Synthesis of Graphene Oxide. *ACS Nano* **4**, 4806–4814 (2010).

Metal Functionalization: Chemical Deposition of Au

Bright field (left) and dark field (right) TEM images of Au nanoparticles deposited on graphene. Some larger particles ~1nm are visible in the BF image, while individual gold atoms decorating the surface are visible in the DF image.

Metal Functionalization: Plasma Deposition

metal-

graphene

Step 4

dissolution of metal foil in plasma and deposition on graphene

A plasma deposition approach for depositing nanoparticles from metal foil is being optimized (schematic at left).

(Above): TEM images show ~5 nm Au particles (dark spot, upper middle) are visible on the graphene surface.

(Below): Photos before and after plasma deposition of Au onto a silicon wafer.

Functionalization with metals

Plasma Deposited Gold Particles on Monolayer Graphene:

Au particle moving across surface

Au particle shrinking

Bulk Modification

GO as prepared:

Surface Area Before	Surface Area After			
Processing	Activation			
380 m ² /g	2336 m ² /g			

Microwave processed GO:

KOH activation of microwaved GO:

BET measurements indicate a more than 6x increase in surface area after activation

		Task Completion Date		
Task #	Project Milestones		Percent Complete	
Milestone 1	Specific surface area of carbon materials >1400m ² /gm.	10/31/15	100%	
Milestone 2	Electron Microscopy analysis to determine metal distribution. Goal is metal clusters <1 nm on graphene.	1/31/16	100%	
Milestone 3	Develop Sieverts method for rapid turnaround by measuring fewer data points (able to measure 1 sample / day). Results should be comparable to full isotherms at 77 K and 87 K to within 5%. Method must 1) obtain parameters to check Chahine rule, and 2) obtain sorption at low coverage to measure isosteric heat (Henry's Law regime).	4/30/16	100%	
Milestone 4	Validation of graphene syntheses of Caltech graphenes and cycloparaphenylene. Analysis of graphene to bulk density of 0.5 to 0.7 gm/cc and that retain 80% of as-prepared surface areas. Bulk and skeletal density using He pychnometry	7/31/16	50%	
Go/No-Go 1	Meet or exceed present capabilities of carbon sorbents. Exceed 5 wt% excess and 35g/L total adsorption at 77K at P<100bar. Ensures that we can meet the best of the unmodified dense carbons before functionalization.	7/31/16		
Milestone 5	Use oxygen plasma etching to induce 1-2 nm pores in sheet structures. Measure changes in specific surface area and hydrogen adsorption capacity. Determine if the pores are contributing >10% to BET surface area and to sorption characteristics	10/31/16	20%	

Summary

- Acquired a BET system and second Sieverts system and installed them in new lab space in 204 Keck Laboratory
- Demonstrated surface area of a micro-porous carbon >1400 m²/g (2300 m²/g) using our BET system and single inflection point analysis of N₂ isotherm data (1st quarter milestone)
- Functionalized graphene with Au clusters <1 nm in diameter via a chemical route, and demonstrated plasma deposition of metal clusters (2nd quarter milestone)
- Developed rapid turnaround Sieverts method for screen materials without collection of full isotherms (3rd quarter milestone)
- Prepared graphene oxide and graphene at Caltech, and characterized H₂ uptake in cycloparaphenylene and PECONF4 (progress towards 4th quarter milestone)
- Observed a change in surface area from plasma exposure of a high surface-area carbon (progress towards 5th quarter milestone)

SUPPLEMENTAL SLIDES

TEM Imaging of Metal Deposition and Plasma Exposure

Monolayer graphene on Cu mesh grid:

Monolayer graphene on copper mesh grid obtained from Ted Pella, Inc. (a) Shows a wide-field image. (b) Shows a region in more detail, revealing surface contaminants (black dots). (c) The SAD obtained with a 40 µm aperture for the region in (b).

Amorphous Carbon exposed to oxygen plasma:

TEM images of amorphous carbon spanning a copper grid at low and high magnifications. An unprocessed samples is shown in (a) and (b). The sample was then exposed to oxygen plasma for varying times (c-g) as indicated at the top of the figure.

Graphite, graphene, graphite oxide, graphene oxide, GO, rGO . . .

Abbreviated guide:

Graphite – multiple layers of graphene

Graphite Oxide – multi-layer graphene with additional oxygen atoms, often used interchangeably with graphene oxide

Graphene – a single layer of carbon packed in a hexagonal lattice with a C-C distance of 0.142nm

Graphene oxide (GO) – graphene with additional epoxides, alcohols, ketone carbonyls, and carboxylic groups

Reduced graphene oxide (rGO) – treated* graphene oxide that intends to remove oxygen and produce pristine graphene

Treatment includes hydrazine, hydrazine hydrate, hydrogen plasma, heat treatment (>1000° C) 20

Oxygen Plasma Etching as Preparation for Functionalization

Changes in Various Carbon Samples with Oxygen Plasma Exposure Monitored with Raman:

Plasma etching induces changes in the