# Design and Synthesis of Materials with High Capacities for Hydrogen Physisorption

## PI: Brent Fultz Department of Applied Physics and Materials Science California Institute of Technology June 8-9, 2016 Project ST120

This presentation does not contain any proprietary, confidential, or otherwise restricted information



# Overview

## Timeline

- Project start date August 1, 2015
- Project end date July 31, 2018
- Percent complete: 22%

## Barriers

- Weight and volume of on board hydrogen storage systems
- Low temperature and low enthalpy of adsorption

## Budget

Total project funding \$1M (3 yrs) Federal share \$1M
Funding for FY16 DOE share \$333k

## Partners

Interactions/collaborations

T. Baumann, LLNL R.C. Bowman, Jr.

2

## Why graphene instead of activated carbon?

Activated carbon can have higher

surface areas (>3100m<sup>2</sup>/g) but... zig-zag and armchair edge terminations have weaker

zig-zag armchair 500E Kynol ACF-10 (m<sup>2</sup>/g) 400 E Graphite interlayer spacing Area 300E Surface 200 100 0.4 0.8 1.2 1.6 Pore Width (nm) 1 nm

binding sites than graphene surface. Functionalization possible but less well-defined geometrically so less easy to interpret.

**Graphene** has a lower theoretical surface area (2630  $m^2/g$ ), but more regular for functionalization.



Commensurate  $\sqrt{3}$ structure (LiC<sub>6</sub>) or HC<sub>3</sub> => ~5.3 wt%. (39 g/L)



Incommensurate solid H<sub>2</sub> on graphite  $=> \sim 7.7 \text{ wt\%}.$ (54g/L)

### Capacity of Conventional Carbons



### Rationale

• Single layer graphene is a platform with excellent surface-tovolume ratio -functionalize it.

• Synthesis and functionalization using

- graphite oxide chemical routes
- plasma physical approaches



### Synthesis and Preparation





Oxygen Plasma Etching





## Materials Characterization Infrastructure















#### Sieverts Apparatus



7

## Detailed Project Plan

|                                                        |                            | SEM,<br>Raman,<br>XRD | TEM | FTIR | BET | Rapid<br>Sieverts | Skeletal<br>Density<br>(He)* | Sieverts* | Ref. | Progress |
|--------------------------------------------------------|----------------------------|-----------------------|-----|------|-----|-------------------|------------------------------|-----------|------|----------|
| O <sub>2</sub> plasma                                  | graphene                   | ×                     | Х   |      |     |                   |                              |           |      | 80%      |
|                                                        | bulk                       | ×                     |     |      | X   |                   |                              |           |      |          |
| Au, Cu plasma                                          | graphene                   | ×                     | Х   |      |     |                   |                              |           |      | 80%      |
|                                                        | bulk                       | ×                     | Х   |      | ×   | ×                 |                              |           |      |          |
| Chemical Synthesis-<br>graphite graphene<br>oxide (GO) | modified Hummers           | ×                     | ?   |      |     |                   |                              |           | 8    | 75%      |
|                                                        | varying starting graphite  | ×                     | ?   |      |     |                   |                              |           |      | 25%      |
| Chemical Synthesis- GO<br>to rGO/graphene              | hydrazine hydrate          | ×                     | ×   |      | ×   |                   |                              |           |      |          |
|                                                        | microwave                  | ×                     | X   |      | ×   |                   |                              |           | 4    | 50%      |
| Chemical Synthesis-<br>modified graphene               | KOH activation             | ×                     |     |      | ×   | ×                 |                              |           | 4    | 50%      |
|                                                        | compressed                 | ×                     |     |      | ×   | ×                 |                              |           | 2, 3 |          |
| Chemical Synthesis-<br>metal incorporation             | Au (HAuCl <sub>4</sub> )   | ×                     | Х   |      |     | ×                 |                              |           | 1    | 75%      |
|                                                        | Cu (CuCl <sub>2</sub> )    | ×                     | Х   |      |     | ×                 |                              |           | 7    | 15%      |
|                                                        | Co, Ni, Zn?                | ×                     | Х   |      |     | ×                 |                              |           |      |          |
| ALD                                                    | TiO <sub>2</sub> (initial) | ×                     | Х   | ×    | X   | ×                 |                              |           | 5    |          |

\* considered after evaulation of Rapid Sieverts

<sup>1</sup>Koo et al. J. Mater. Chem. 2012, 22, 7130, <sup>2</sup>Zhang et al. Carbon 2013, 54, 143, <sup>3</sup>Ghaffari et al. Adv. Mater. 2013, 25, 4879, <sup>4</sup>Kim et al. ACS Nano 2013 7 (8), 6899, <sup>5</sup>Tiznado et al. Powder Tech. 2014, 267, 201, <sup>6</sup>Wang et al. Carbon 2014, 76, 220, <sup>7</sup>Tien et al. Carbon 2011, 49, 1550, <sup>8</sup>Marcano et al. ACS Nano 2010, 4 (8) 4806



### Sieverts Measurements

#### Sieverts Instrumentation at Caltech





(Above): A Sieverts method for rapid screening of samples by measuring fewer data points require 1/3<sup>rd</sup> the time for a full isotherm measurement. A single point measurement at 77K (red) agrees with a full isotherm measurement (black) on a test sample, PCONF4.

(Left): A third Sieverts system was obtained from JPL and brought to new lab-space at Caltech. 10 Caltech

## Graphene Synthesis

- Our synthesis of graphene oxide and graphene using a modified Hummers method.
- Optimizing the synthesis process for further modification and functionalization:
  - Analyzing the effects of starting with different types of graphite materials (Superior Graphite, Sigma-Aldrich, Graphene Supermarket, etc.).
  - Varying the technique for reduction of graphene oxide to graphene.

Modified Hummers Method (Tour, et al.):



D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, Improved Synthesis of Graphene Oxide. *ACS Nano* **4**, 4806–4814 (2010).

## Metal Functionalization: Chemical Deposition of Au



Bright field (left) and dark field (right) TEM images of Au nanoparticles deposited on graphene. Some larger particles ~1nm are visible in the BF image, while individual gold atoms decorating the surface are visible in the DF image.

## Metal Functionalization: Plasma Deposition



metal-

graphene

Step 4

dissolution of metal foil in plasma and deposition on graphene



A plasma deposition approach for depositing nanoparticles from metal foil is being optimized (schematic at left).



(Above): TEM images show ~5 nm Au particles (dark spot, upper middle) are visible on the graphene surface.

(Below): Photos before and after plasma deposition of Au onto a silicon wafer.



## Functionalization with metals

Plasma Deposited Gold Particles on Monolayer Graphene:



Au particle moving across surface

### Au particle shrinking

## **Bulk Modification**

GO as prepared:



| Surface Area Before   | Surface Area After     |  |  |  |
|-----------------------|------------------------|--|--|--|
| Processing            | Activation             |  |  |  |
| 380 m <sup>2</sup> /g | 2336 m <sup>2</sup> /g |  |  |  |

Microwave processed GO:

KOH activation of microwaved GO:



BET measurements indicate a more than 6x increase in surface area after activation

|                             |                                                                                                                                                                                                                                                                                            |                     | Task Completion Date |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|--|--|
| Task #   Project Milestones |                                                                                                                                                                                                                                                                                            | Original<br>Planned | Percent<br>Complete  |  |  |
| Milestone 1                 | Specific surface area of carbon materials >1400m <sup>2</sup> /gm.                                                                                                                                                                                                                         | 10/31/15            | 100%                 |  |  |
| Milesters 2                 | Electron Microscopy analysis to determine metal distribution. Goal is                                                                                                                                                                                                                      | 1/21/16             | 1000/                |  |  |
| Milestone 2                 | metal clusters <1 nm on graphene.                                                                                                                                                                                                                                                          | 1/31/16             | 100%                 |  |  |
|                             | Develop Sieverts method for rapid turnaround by measuring fewer data<br>points (able to measure 1 sample / day). Results should be comparable to<br>full isotherms at 77 K and 87 K to within 5%. Method must 1) obtain<br>parameters to check Chahine rule, and 2) obtain sorption at low |                     |                      |  |  |
| Milestone 3                 | coverage to measure isosteric near (menry's Law regime).                                                                                                                                                                                                                                   | 4/30/16             | 100%                 |  |  |
|                             | Validation of graphene syntheses of Caltech graphenes and cycloparaphenylene. Analysis of graphene to bulk density of 0.5 to 0.7 gm/cc and that retain 80% of as-prepared surface areas. Bulk and skeletal density using He pychnometry                                                    |                     | 500/                 |  |  |
| Milestone 4                 | Most or avecad present canabilities of carbon sarbonts. Excoud 5                                                                                                                                                                                                                           | //31/16             | 50%                  |  |  |
|                             | wt% excess and 35g/L total adsorption at 77K at P<100bar. Ensures                                                                                                                                                                                                                          |                     |                      |  |  |
| Go/No-Go 1                  | functionalization.                                                                                                                                                                                                                                                                         | 7/31/16             |                      |  |  |
| Milestone 5                 | Use oxygen plasma etching to induce 1-2 nm pores in sheet structures.<br>Measure changes in specific surface area and hydrogen adsorption<br>capacity. Determine if the pores are contributing >10% to BET surface                                                                         |                     |                      |  |  |
|                             | area and to sorption characteristics                                                                                                                                                                                                                                                       | 10/31/16            | 20%                  |  |  |

## Summary

- Acquired a BET system and second Sieverts system and installed them in new lab space in 204 Keck Laboratory
- Demonstrated surface area of a micro-porous carbon >1400 m<sup>2</sup>/g (2300 m<sup>2</sup>/g) using our BET system and single inflection point analysis of N<sub>2</sub> isotherm data (1<sup>st</sup> quarter milestone)
- Functionalized graphene with Au clusters <1 nm in diameter via a chemical route, and demonstrated plasma deposition of metal clusters (2<sup>nd</sup> quarter milestone)
- Developed rapid turnaround Sieverts method for screen materials without collection of full isotherms (3<sup>rd</sup> quarter milestone)
- Prepared graphene oxide and graphene at Caltech, and characterized H<sub>2</sub> uptake in cycloparaphenylene and PECONF4 (progress towards 4<sup>th</sup> quarter milestone)
- Observed a change in surface area from plasma exposure of a high surface-area carbon (progress towards 5<sup>th</sup> quarter milestone)

# SUPPLEMENTAL SLIDES

### TEM Imaging of Metal Deposition and Plasma Exposure

Monolayer graphene on Cu mesh grid:



Monolayer graphene on copper mesh grid obtained from Ted Pella, Inc. (a) Shows a wide-field image. (b) Shows a region in more detail, revealing surface contaminants (black dots). (c) The SAD obtained with a 40 µm aperture for the region in (b).

#### Amorphous Carbon exposed to oxygen plasma:



TEM images of amorphous carbon spanning a copper grid at low and high magnifications. An unprocessed samples is shown in (a) and (b). The sample was then exposed to oxygen plasma for varying times (c-g) as indicated at the top of the figure.

## Graphite, graphene, graphite oxide, graphene oxide, GO, rGO . . .



#### **Abbreviated guide:**

Graphite – multiple layers of graphene

Graphite Oxide – multi-layer graphene with additional oxygen atoms, often used interchangeably with graphene oxide

Graphene – a single layer of carbon packed in a hexagonal lattice with a C-C distance of 0.142nm

Graphene oxide (GO) – graphene with additional epoxides, alcohols, ketone carbonyls, and carboxylic groups

Reduced graphene oxide (rGO) – treated\* graphene oxide that intends to remove oxygen and produce pristine graphene

Treatment includes hydrazine, hydrazine hydrate, hydrogen plasma, heat treatment (>1000° C) 20

### Oxygen Plasma Etching as Preparation for Functionalization

Changes in Various Carbon Samples with Oxygen Plasma Exposure Monitored with Raman:



Plasma etching induces changes in the