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Timeline and Budget Barriers
Project Start Date:  August 1%t, 2015 Barriers addressed
Project End Date:  July 31%t, 2018 — Volumetric Density

— Gravimetric Density

Total Project Budget: $1,040,000

Federal Share:

Ford: $192,000
Total:  $992,000 Interactions/collaborations:
Cost Share:  $48,000 (Ford) Ford Motor Company, Hydrogen
. Storage Engineering Center of
Total Funds Spent: $150,000 Excellence (HSECOE)
*Estimated as of 3/31/16 Project lead:

D. Siegel, University of Michigan
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* A high-capacity, low-cost method for storing hydrogen remains one of the
primary barriers to the widespread commercialization of fuel cell vehicles

* Storage via adsorption is a promising approach due to its fast kinetics,
facile reversibility, and high gravimetric densities

* An unfortunate characteristic of adsorptive storage is that high gravimetric
densities typically come at the expense of volumetric density

 HSECoE developed a 100 bar MOF-5-based storage system that
approached competitiveness with 700 bar compressed. Our work in the
HSECoE identified additional MOFs that may out-perform MOF-5,
potentially resulting in a low-pressure system that could surpass 700 bar

Project goal: Demonstrate best-in-class MOFs that achieve high
volumetric and gravimetric H, densities simultaneously, while
maintaining reversibility and fast kinetics



Relevance

Objective 1: Demonstrate MOFs with high volumetric and
gravimetric hydrogen densities, exceeding those of MOF-5

— Prior studies typically focus on maximizing gravimetric density alone
— Synthetic efforts guided by high-throughput screening (Year 1 emphasis)

— If successful, these compounds will set a new high-water mark for H, density
in adsorbents at cryogenic conditions

v Screened 2,000+ MOFs using GCMC & empirical methods
v Identified IRMOF-20: exceeds the performance of MOF-5 benchmark

Objective 2: System-level projections

— Project performance of most promising compounds to the system level by
parameterizing models developed by the HSECoE

— Clarify how materials properties impact system performance
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Approach

Note: All volumetric hydrogen densities reported herein assume
single-crystal MOF densities
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Computation guides experiments
Crystal structure P 8 P

databases* Experiments inform models
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*Goldsmith, et al., Chem. Mater. 25, 3373 (2013)
*Chung et al., Chem. Mater. 26, 6185 (2014)



Milestones

Our approach links atomic scale computation, experimental synthesis &
characterization, and system level modeling

Milestone
or Description
Go/No-Go
* Update screening method to account for impact of Comblete
Updﬁ;efnd adsorbed hydrogen on total volumetric hydrogen piete.
validate .
1 computational 10/31/15 der.ISIty . . - Added GCMC to screening
* Validate against experimental capacities for MOF-5
methods protocol

baseline

hesi I MOFs with ial h lete.
1 MOF synthesis | 1/31/16 Synthesize at least 3 MOFs with potential to surpass the Complete

hydrogen storage capacity of MOF-5 by 15% 7 MOFs synthesized
1 ComEXJfarl?onal 4/30/16 Extend screening to examine 50,000 new compounds Partiallv complete
preF::Iictions from the Cambridge Structure Database y P

Demonstrate at least 1 MOF with >90% projected SA,

E Go/No-Go 7/31/16 >3,000 m?%/g, and H, capacity matching MOF-5 baseline

IRMOF-20 demonstrated

Demonstrate at least 1 MOF with hydrogen capacities

2| ERNeEn ) R el B A5




M High-throughput Screening &=
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Prior work: developed a database of MOFs by mining the CSD. Chahine rule
and crystal structure were used to predict H, capacity in thousands of compounds
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Chem. Mater., 25, 3373 (2013).



* GCMC = atomistic method that calculates the total amount of H, (adsorbed + gas
phase) contained within the pore space of a MOF at given T, P

* Does not rely on empirical correlations such as the Chahine-rule

* Calculations employ the MGS* and the Pseudo-
FH** unified atom models for H,-MOF interactions
e  MOF atoms are fixed

H Unified
2 _ Atom
Molecule Model
12 6
) - ()
rij rij

Force Field Sigma (A) Epsilon/kg (K)

Uij(r,-j) = 4¢

Example GCMC simulation of CH, adsorption
in Ni-DOBDC at 298 K and 35 bar MGS 2.958 36.7

Pseudo-FH 3.064 30.1

*Michels, de Graaff and Seldam, Physica, 1960, 26, 393; Ryan, Broadbelt, and Snurr, Chem. Comm. 2008, 4134
**Fischer, Hoffmann, Fréba, ChemPhysChem, 2009,10, 2647 .
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Flowing supercritical CO, activation is milder than vacuum activation
- minimizes pore collapse and maximizes surface area

Back pressure
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Batch activation: Nelson, A. P.; Farha, O. K.; Mulfort, K; Hupp, J. T. J. Am. Chem. Soc. 2009, 131, 458.
Flow activation: Liu, B.; Wong-Foy, A. G.; Matzger, A. J. Chem. Commun. 2013, 49, 1419.
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MOFs activated with flowing sc-CO, generally exhibit superior properties

Surface area Surface area
(flow Sc-CO, activation) (vacuum/batch Sc-CO, activation)

UMCM-9 5357 m?/g 1330 m?/g (vac)

FI 4813 m?/g 4043 m?/g (batch)

MOF-74 (Zn/DOBDC) 1108 m?/g 750-950 m?/g (vac)

UMCM-10 4001 m?/g Structure coIIar‘Jses‘ under vacuum
activation

UMCM-12 4849 m?/g Structure collapses‘ under vacuum
activation

IRMOF-8 (non-interpenetrated) 4461 m?/g Structure collapses under vacuum

activation

A series of functionalized

~ 2 -
IRMOF-8 (non-interpenetrated) SO

1710-1770 m?/g

HKUST-1 (heating required)

682-1944 m?/g (vac)

Liu, B.; Wong-Foy, A. G.; Matzger, A. J. Chem. Commun. 2013, 49, 1419.

Dutta, A.; Wong-Foy, A. G.; Matzger, A. J. Chem. Sci. 2014, 5, 3729.

Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. Chem. Commun. 2012, 48, 9838.
Tran, L. D.; Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. Langmuir 2015, 31, 2211.



Accomplishments



“Quick and dirty” Chahine-rule predictions of H, uptake in MOFs correlate
strongly with GCMC calculations
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Although GCMC is more expensive, it provides access to full isotherm and allows
estimation of usable capacities
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Pseudo-FH force field appears to more accurately reproduce our measurements
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At present our GCMC calculations employ both the p-FH and MGS force fields
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Performed air-free synthesis! of the benchmark compound MOF-5

H,BDC + Zn(NO;),+6H,0 ———" g 7n,0(BDC);

O._OH

H,BDC =

HO™ ~O

Benzenedicarboxylic acid

Activated by:
1) Multiple solvent exchanges
2) RTvacuum drying

BET S.A. = 3512 mz/g
Calculated = 3563 m?/g
Literature = 3800 m2/g [1]

'Kaye, Dailly, Yaghi, and Long, 2007. JACS, 129,14176: 8.4 wt.%, 54 g/L at 35 bar/77K



Excess Adsorption (g/kg)

Measured performance of in-house MOF-5
H, uptake & BET surface area essentially identical to BASF-supplied MOF-5 (HSECoE)

Usable capacity (pressure swing to 5 bar) adopted as benchmark

701
601
501
40
301 .
20/

109

MOF-5 (Air-free synthesis)
® Adsorption
O Desorption

MOF-5 (from BASF)
A Adsorption
2 Desorption

20

40 60 80

Pressure (bar)

100

T=77K
Total Usable (P-swing)
p Volumetric Gravimetric Volumetric Gravimetric
(bar) | (g/L) (wt.%) (/1) (wt.5%)
5 22.2 3.5
35 44.4 6.8 22.2 3.3
50 47.8 7.3 25.6 3.8
100 53.3 8.0 31.1 4.5




Predicted total and usable H, capacity for more than 2,000 compounds using GCMC
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* MOFs extracted from UM database, CORE database, and intuition
» I|dentified dozens of candidates that exceed MOF-5 on usable (pressure swing) basis



Computation has identified ~70 MOFs that are projected to surpass MOF-5 in H, capacity

SAnccecibie Povera _ Tot. Grav. Tot. Vol. Tot. Grav. Tot. Vol. Usable Grav. Usable Vol. Usable Grav. Usable Vol.
MOF [r;;e/z'] e [gifcv;;g] [C‘r‘nccgiz'i'e 35 bar 35 bar 100 bar 100 bar 35->5bar  35->5bar 100> 5bar 100 - 5 bar

[wt. %] [g/L] [wt. %] [g/L] [wt. %] [g/L] [wt. %] [g/L]

1 4124 0.50 1.61 10.3 57.8 11.6 66.2 4.0 23.8 53 32.2
2 3469 0.57 1.45 9.1 57.2 10.6 67.7 4.3 28.8 5.8 39.2
3 4040 0.54 1.46 9.4 56.6 10.6 64.4 3.9 24.6 5.0 324
4 4614 0.50 1.63 10.0 55.6 11.5 65.1 4.7 27.6 6.2 37.1
5 3801 0.57 1.42 8.9 55.6 10.2 64.4 4.1 26.6 53 355
6 3648 0.59 1.36 8.5 55.4 9.8 64.2 3.9 26.8 5.2 35.7
7 3564 0.61 1.32 8.3 55.4 9.5 64.2 3.7 25.8 49 34.6
8 4902 0.42 1.92 11.5 55.1 13.2 64.5 5.2 26.6 6.9 35.9
9 3644 0.60 1.35 8.4 55.1 9.6 64.1 3.9 26.8 5.1 35.8
10 4623 0.45 1.77 10.8 55.0 12.3 63.4 4.7 253 6.1 33.7
11 4687 0.46 1.75 10.6 54.8 12.2 64.8 5.3 29.1 7.0 39.0
12 3636 0.59 1.37 8.4 54.7 9.7 64.0 4.0 27.1 53 36.4
13 3636 0.59 1.37 8.5 54.6 9.7 63.7 4.1 27.6 5.4 36.8
14 3810 0.54 1.50 9.1 54.5 10.5 64.0 4.2 26.7 5.7 36.2
15 4676 0.47 1.76 10.5 54.4 12.1 64.2 5.2 28.4 6.8 38.2
16 4434 0.52 1.54 9.4 54.1 10.7 62.3 4.1 25.2 5.4 334
17 5769 0.40 2.06 11.9 54.0 13.8 63.8 6.0 28.8 7.8 38.6
18 3575 0.61 1.32 8.1 53.7 9.4 62.7 3.8 26.2 5.0 35.2
19 3374 0.58 1.35 8.4 53.2 9.6 61.7 3.7 24.3 49 32.8
20 5159 0.43 1.88 10.8 52.7 12.6 62.5 5.5 28.4 7.3 38.2
MOF-5 3512 0.60 1.14 6.8 44.4 8.0 53.3 3.3 22.2 4.5 31.1

These compounds surpass MOF-5 in total, usable PS, and usable T+PS



Synthesis of IRMOF-20 was attempted after computation identified it as a
promising compound

H,TTDC + Zn(NOs),+4H,0 ——=22"20= 3 Zn,O(TTDC);

O._OH

NS
H,TTDC = —
S o

HO™ O
Thieno[3,2-b]thiophene-2,5-dicarboxylic acid

Activated by:
1) Multiple solvent exchanges
2) RT vacuum drying

BET S.A. = 4073 m?/g (94% of calc’d)
Calculated = 4324 m?/g
Literature = 3409 m?/g

Rowsell, J. L. C.; Yaghi, O.M. J. Am. Chem. Soc. 2006, 128, 1304.



M IRMOF-20 H, Capacity
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Usable capacity of IRMOF-20 surpasses that of MOF-5
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Usable Volumetric Usable Gravimetric
(g H,/L) (wt. %)
p (bar) MOF-5 IRMOF-20 MOF-5 IRMOF-20
35 22.2 22.2 3.3 3.9
50 25.6 26.1 3.8 4.5
100 31.1 33.1 4.5 5.7




SUKYON

Ma, L. et al., Angew. Chem.
Int. Ed. 2009, 48, 9905.

BET S.A. =2152 m?/g (fresh)
[= 2081 m?/g (6 days under N,)]

Calculated = 4965 m?/g

Literature = 1020 m3/g

Chahine rule capacities:
Total grav. =11.2wt. %
Total vol. =61g/L

EPOTAF (SNU-21)

Kim, T. K. et al., Chem.
Commun. 2011, 47, 4258.

BET S.A. =27 m?g
Calculated = 5208 m?/g
Literature =905 m2/g

Chahine rule capacities:

Total grav. =11 wt. %
Totalvol. =71g/L

DIDDOK

Kondo, M. et al., J. Organomet.
Chem. 2007, 692, 136.

BET S.A. =578 m?/g
Calculated = 4652 m?/g
Literature = not reported

Chahine rule capacities:
Total grav. =10.2 wt. %
Total vol. =60 g/L



Excess Adsorption (g/kg)

Excess Adsorption (g/kg)
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M MOF Dashboard
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We have developed a database to track promising compounds and share data
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M University of Michigan, Mechanical Engineering

T — Atomistic simulation and project management

M University of Michigan, Dept. of Chemistry

R — Synthesis and characterization of targeted MOFs

Ford Motor Company (sub-contractor)

— PCT measurements

— Materials augmentation, characterization, scale-up, and
system modeling

@ HSECOE HSECoE (unfunded collaborator)

— Assistance with system models



M Challenges and Barriers
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* Incorrect, incomplete, or disordered crystal structure data

— Garbage in, garbage out
— False positives in screening

e Structure collapse or incomplete solvent removal during

activation
— “Can it be made?”
— Failure to achieve expected surface area and porosity
— Which features control “pristineness?”

* Achieving absolute accuracy from computed isotherms

— Trends and surface area appear to be reliable

— Pseudo-FH force field appears to more accurately reproduce experimental
isotherms than does MGS model
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Potential Future Work

Expand screening to additional compounds

Explore influence of interatomic potential on accuracy of
computed isotherms

Explore strategies for maximizing volumetric surface area

Optimize synthesis/activation of UMCM-4

— Replicate predicted surface area

Focus on 2"¥ go/no-go milestone
— ldentify MOFs with 15% improvement in H, capacity over MOF-5



Summary

* New project: underway for 8 months

* Goal: demonstrate MOFs that achieve high volumetric and gravimetric H,
densities simultaneously (at cryogenic conditions)

— Establish new high-water mark for H, storage in adsorbents

* Approach: High-throughput screening coupled to experimental synthesis,
activation, and characterization

* Accomplishments:
— Replicated performance of BASF-supplied MOF-5 with home-made MOF-5

— 2,000+ MOF capacities screened computationally; several promising compounds
identified

— 7 candidate MOFs synthesized and characterized

— Demonstrated IRMOF-20: surpasses usable capacity of MOF-5

M umich.edu/~djsiege
djsiege@umich.edu
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MICHIGAN




UNIVERSITY OF
MICHIGAN




Technical Backup Slides
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Recommended Best Practices

100 X d V ore d k — d bulk for the Characterization of
tof = exc + £ P pore =_9 U Storage Properties of
Hydrogen Storage Materials,
1+ dngore dskdbulk V3.34, p.223
C,.: = total adsorption capacity in wt.% dg = density of H, gas at T,P
Ceyc = €XCess adsorption in wt.% d, = skeletal density
Voore = SPecific pore volume dpu = bulk density
. . . .
“Material” Hydrogen Capacity Definitions .M‘H"‘f‘ls\ T
ponne? ! p X |
; ® ??‘5 ? © .. %
35 0‘. 'v‘}‘ ‘(. 2 g?
: O.MW
‘b .

243

Porous  ExcessH2 Absolute H2 Total H2
Material  Capacity = Capacity  Capacity
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Several MOF “Targets of Opportunity” were identified
— Combine high gravimetric and volumetric densities
— Overlooked: no/limited experimental evaluation
— Can these be synthesized in a robust form?

EPOTAF (SNU-21) DIDDOK LURGEL (TO-MOF) ENITAX (IMP-9)
Total Grav. (wt. %) 11 10.2 9.7 9.3

Total Volumetric (g/L) 71 60 57 59
Crystal Density (g/cm3) 0.58 0.53 0.53 0.57
Calc’d/Meas. SA (m?/g) 5208/700-900 4651 4386/680 4162

Best combination of
rav. & vol. density. CO, uptake

g ¥ No measurements 2 UP

H, uptake measured measured.
previously: 5 wt %

No measurements

31
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H,oba + bpe + Zn(NO,),+6H,0 2 3 Zn, (oba),(bpe)

23°C
2Qba = m)ij/ \©\W

4.,4’-Oxybis(benzoic) acid

|
bpe = "
_N
tfrans-1,2-Bis(4-pyridyl)ethylene

Activated by:

1) Multiple solvent exchanges
2) Flowing scCO,

BET S.A.= 578 m?/g

Kondo, M.; Irie, Y.; Miyazawa, M.; Kawaguchi,
— 2
Calculated = 4652 m“/g H.: Yasue, S.; Maeda, K. Uchida, F.

Literature = not reported J. Organomet. Chem. 2007, 692, 136.
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HO ~O HO ~O

|dea:
1) Partially fill the pores of MOF-5 to increase surface area per volume

2) Maintain the same unit cell size, increase crystal density
3) Aim to increase H, volumetric density while keeping gravimetric density
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H,BDC + H,MeBDC =Tl g 7, 0(BDC), 19(MeBDC)q s
+ Zn(N03)2.6H20

HO O
HBDC= ) )
O OH

Benzenedicarboxylic acid

CHs
HO @)
H,MeBDC

= O OH

Methylbenzenedicarboxylic acid

Activated by:
1) Multiple solvent exchanges
2) RT vacuum drying

BET S.A. = 3171 m?/g



H,BDC + H,TPA + Zn(NO,),+6H,0

HO 0

HBDC = ) )«
@) OH
Benzenedicarboxylic acid

O+_OH

N
HO\[(©/ \©YO
o) OH
Triphenylaminetricarboxylic acid

Activated by:

1) Multiple solvent exchanges
2) RT vacuum drying

BET S.A. = 3000 m?/g
Calculated = 3810 m?/g
Literature = 3500 m?/g

H,TPA =

N,N-diethylformamide

85 °C

Y A ~ 3 - 3
et a_8_r -t B,
s - y . ) .
- - by “a -
R/ " J | L
s a8 . L =
FR W L g
A ; .
. ) v g .
B L = - =
s LY=f 3= =T a_ 80,
W bl - A .
« - [ 4
> 2 x] - - sz g
o AL lll b |I.
L, e < " .

3 7n,0(BDC), 5(TPA)

Koh, K.; Wong-Foy, A. G.; Matzger, A. J.
J. Am. Chem. Soc. 2010, 132, 15005.





