Hydrogen Adsorbents with High Volumetric Density:

New Materials and System Projections

Alauddin Ahmed,¹ Yiyang Liu,² Justin Purewal,³ Anuska Shresth,² Antek Wong-Foy,² Adam Matzger,² Mike Veenstra,³ and **Don Siegel**¹ (PI)

¹Mechanical Engineering Department and ²Department of Chemistry, University of Michigan

³Ford Motor Company

DOE Annual Merit Review, June 8, 2016, Washington, DC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

Project Start Date: Project End Date: August 1st, 2015 July 31st, 2018

Total Project Budget: \$1,040,000

Federal Share:

UM:	\$800,000
Ford:	\$192,000
Total:	\$992,000
Cost Share:	\$48,000 (Ford)
Total Funds S	pent:* \$150,000

*Estimated as of 3/31/16

Barriers

Barriers addressed

- Volumetric Density
- Gravimetric Density

Partners

Interactions/collaborations:

Ford Motor Company, Hydrogen Storage Engineering Center of Excellence (HSECoE)

Project lead:

D. Siegel, University of Michigan

- A high-capacity, low-cost method for storing hydrogen remains one of the primary barriers to the widespread commercialization of fuel cell vehicles
- Storage via adsorption is a promising approach due to its fast kinetics, facile reversibility, and high gravimetric densities
- An unfortunate characteristic of adsorptive storage is that high gravimetric densities typically come at the expense of volumetric density
- HSECoE developed a 100 bar MOF-5-based storage system that approached competitiveness with 700 bar compressed. Our work in the HSECoE identified additional MOFs that may out-perform MOF-5, potentially resulting in a low-pressure system that could surpass 700 bar

Project goal: Demonstrate best-in-class MOFs that achieve high volumetric and gravimetric H₂ densities *simultaneously*, while maintaining reversibility and fast kinetics

Relevance

Objective 1: Demonstrate MOFs with high volumetric and gravimetric hydrogen densities, exceeding those of MOF-5

- Prior studies typically focus on maximizing gravimetric density alone
- Synthetic efforts guided by high-throughput screening (Year 1 emphasis)
- If successful, these compounds will set a new high-water mark for H₂ density in adsorbents at cryogenic conditions
- ✓ Screened 2,000+ MOFs using GCMC & empirical methods
- ✓ Identified IRMOF-20: exceeds the performance of MOF-5 benchmark

Objective 2: System-level projections

- Project performance of most promising compounds to the system level by parameterizing models developed by the HSECoE
- Clarify how materials properties impact system performance

Approach

Note: All volumetric hydrogen densities reported herein assume single-crystal MOF densities

Concept

Milestones

Our approach links atomic scale computation, experimental synthesis & characterization, and system level modeling

Year	Milestone or Go/No-Go	Due	Description	Status
1	Update and validate computational methods	10/31/15	 Update screening method to account for impact of adsorbed hydrogen on total volumetric hydrogen density Validate against experimental capacities for MOF-5 baseline 	Complete . Added GCMC to screening protocol
1	MOF synthesis	1/31/16	Synthesize at least 3 MOFs with potential to surpass the hydrogen storage capacity of MOF-5 by 15%	Complete . 7 MOFs synthesized
Extend computational predictions4/30/16Extend screening to examine 50,000 new from the Cambridge Structure Database		Extend screening to examine 50,000 new compounds from the Cambridge Structure Database	Partially complete	

1	Go/No-Go	7/31/16	Demonstrate at least 1 MOF with >90% projected SA, >3,000 m ² /g, and H ₂ capacity matching MOF-5 baseline	IRMOF-20 demonstrated
---	----------	---------	--	-----------------------

2	Go/No-Go	7/31/17	Demonstrate at least 1 MOF with hydrogen capacities exceeding baseline MOF-5 by 15%	
---	----------	---------	---	--

Prior work: developed a database of MOFs by mining the CSD. Chahine rule and crystal structure were used to predict H₂ capacity in thousands of compounds

J. Goldsmith, et al., Chem. Mater., **25**, 3373 (2013).

Grand Canonical Monte Carlo

- GCMC = atomistic method that calculates the total amount of H₂ (adsorbed + gas phase) contained within the pore space of a MOF at given T, P
- Does not rely on empirical correlations such as the Chahine-rule

Example GCMC simulation of CH_4 adsorption in Ni-DOBDC at 298 K and 35 bar

- Calculations employ the MGS* and the Pseudo-FH** unified atom models for H₂-MOF interactions
- MOF atoms are fixed

Force Field	Sigma (Å)	Epsilon/k _B (K)
MGS	2.958	36.7
Pseudo-FH	3.064	30.1

Flowing supercritical CO₂ activation is milder than vacuum activation \rightarrow minimizes pore collapse and maximizes surface area

Batch activation: Nelson, A. P.; Farha, O. K.; Mulfort, K; Hupp, J. T. J. Am. Chem. Soc. **2009**, 131, 458. Flow activation: Liu, B.; Wong-Foy, A. G.; Matzger, A. J. Chem. Commun. **2013**, 49, 1419.

MOFs activated with flowing sc-CO₂ generally exhibit superior properties

Material	Surface area (flow Sc-CO ₂ activation)	Surface area (vacuum/batch Sc-CO ₂ activation)
UMCM-9	5357 m²/g	1330 m²/g (vac)
FJI	4813 m²/g	4043 m²/g (batch)
MOF-74 (Zn/DOBDC)	1108 m²/g	750-950 m²/g (vac)
UMCM-10	4001 m²/g	Structure collapses under vacuum activation
UMCM-12	4849 m²/g	Structure collapses under vacuum activation
IRMOF-8 (non-interpenetrated)	4461 m²/g	Structure collapses under vacuum activation
A series of functionalized IRMOF-8 (non-interpenetrated)	~4000 m²/g	-
HKUST-1	1710-1770 m ² /g (heating required)	682-1944 m ² /g (vac)

Liu, B.; Wong-Foy, A. G.; Matzger, A. J. *Chem. Commun.* **2013**, *49*, 1419. Dutta, A.; Wong-Foy, A. G.; Matzger, A. J. *Chem. Sci.* **2014**, *5*, 3729. Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. *Chem. Commun.* **2012**, *48*, 9838. Tran, L. D.; Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. *Langmuir* **2015**, *31*, 2211.

Accomplishments

"Quick and dirty" Chahine-rule predictions of H₂ uptake in MOFs correlate strongly with GCMC calculations

Although GCMC is more expensive, it provides access to full isotherm and allows estimation of usable capacities

Pseudo-FH force field appears to more accurately reproduce our measurements

At present our GCMC calculations employ both the p-FH and MGS force fields

Performed air-free synthesis¹ of the benchmark compound MOF-5

- Measured performance of in-house MOF-5
 - H₂ uptake & BET surface area essentially identical to BASF-supplied MOF-5 (HSECoE)
- Usable capacity (pressure swing to 5 bar) adopted as benchmark

Total **Usable** (P-swing) Volumetric Gravimetric Volumetric Gravimetric р (g/L) (wt.%) (g/L) (wt.%) (bar) 5 22.2 3.5 22.2 3.3 35 44.4 6.8 47.8 25.6 3.8 50 7.3 53.3 31.1 100 4.5 8.0

T = 77 K

Predicted total and usable H_2 capacity for more than 2,000 compounds using GCMC

- MOFs extracted from UM database, CoRE database, and intuition
- Identified dozens of candidates that exceed MOF-5 on usable (pressure swing) basis

Computation has identified ~70 MOFs that are projected to surpass MOF-5 in H₂ capacity

MOF	SA _{Accessible} [m²/g]	ρ _{crystal} [g/cm ³]	PV _{Accessible} [cm ³ /g]	Tot. Grav. 35 bar [wt. %]	Tot. Vol. 35 bar [g/L]	Tot. Grav. 100 bar [wt. %]	Tot. Vol. 100 bar [g/L]	Usable Grav. 35 → 5 bar [wt. %]	Usable Vol. 35 → 5 bar [g/L]	Usable Grav. 100 → 5 bar [wt. %]	Usable Vol. 100 → 5 bar [g/L]
1	4124	0.50	1.61	10.3	57.8	11.6	66.2	4.0	23.8	5.3	32.2
2	3469	0.57	1.45	9.1	57.2	10.6	67.7	4.3	28.8	5.8	39.2
3	4040	0.54	1.46	9.4	56.6	10.6	64.4	3.9	24.6	5.0	32.4
4	4614	0.50	1.63	10.0	55.6	11.5	65.1	4.7	27.6	6.2	37.1
5	3801	0.57	1.42	8.9	55.6	10.2	64.4	4.1	26.6	5.3	35.5
6	3648	0.59	1.36	8.5	55.4	9.8	64.2	3.9	26.8	5.2	35.7
7	3564	0.61	1.32	8.3	55.4	9.5	64.2	3.7	25.8	4.9	34.6
8	4902	0.42	1.92	11.5	55.1	13.2	64.5	5.2	26.6	6.9	35.9
9	3644	0.60	1.35	8.4	55.1	9.6	64.1	3.9	26.8	5.1	35.8
10	4623	0.45	1.77	10.8	55.0	12.3	63.4	4.7	25.3	6.1	33.7
11	4687	0.46	1.75	10.6	54.8	12.2	64.8	5.3	29.1	7.0	39.0
12	3636	0.59	1.37	8.4	54.7	9.7	64.0	4.0	27.1	5.3	36.4
13	3636	0.59	1.37	8.5	54.6	9.7	63.7	4.1	27.6	5.4	36.8
14	3810	0.54	1.50	9.1	54.5	10.5	64.0	4.2	26.7	5.7	36.2
15	4676	0.47	1.76	10.5	54.4	12.1	64.2	5.2	28.4	6.8	38.2
16	4434	0.52	1.54	9.4	54.1	10.7	62.3	4.1	25.2	5.4	33.4
17	5769	0.40	2.06	11.9	54.0	13.8	63.8	6.0	28.8	7.8	38.6
18	3575	0.61	1.32	8.1	53.7	9.4	62.7	3.8	26.2	5.0	35.2
19	3374	0.58	1.35	8.4	53.2	9.6	61.7	3.7	24.3	4.9	32.8
20	5159	0.43	1.88	10.8	52.7	12.6	62.5	5.5	28.4	7.3	38.2
MOF-5	3512	0.60	1.14	6.8	44.4	8.0	53.3	3.3	22.2	4.5	31.1

These compounds surpass MOF-5 in total, usable PS, and usable T+PS

Synthesis of IRMOF-20 was attempted after computation identified it as a promising compound

 $4324 \text{ m}^2/\text{g}$

 $3409 \text{ m}^2/\text{g}$

Calculated =

Literature =

Rowsell, J. L. C.; Yaghi, O.M. J. Am. Chem. Soc. 2006, 128, 1304.

Usable capacity of IRMOF-20 surpasses that of MOF-5

	Usable ' (g	Volumetric H ₂ /L)	Usable (\	Gravimetric wt. %)
p (bar)	MOF-5	IRMOF-20	MOF-5	IRMOF-20
35	22.2	22.2	3.3	3.9
50	25.6	26.1	3.8	4.5
100	31.1	33.1	4.5	5.7

A Few Failures

Several promising MOFs could not be synthesized with high surface area

SUKYON

Ma, L. et al., *Angew. Chem. Int. Ed.* **2009**, *48*, 9905.

BET S.A. = $2152 \text{ m}^2/\text{g}$ (fresh) [= $2081 \text{ m}^2/\text{g}$ (6 days under N₂)] Calculated = $4965 \text{ m}^2/\text{g}$ Literature = $1020 \text{ m}^2/\text{g}$

Chahine rule capacities: Total grav. = 11.2 wt. % Total vol. = 61 g/L

EPOTAF (SNU-21)

Kim, T. K. et al., *Chem. Commun.* **2011**, *4*7, 4258.

BET S.A. = $27 \text{ m}^2/\text{g}$ Calculated = $5208 \text{ m}^2/\text{g}$ Literature = $905 \text{ m}^2/\text{g}$

Chahine rule capacities: Total grav. = 11 wt. % Total vol. = 71 g/L

DIDDOK

Kondo, M. et al., *J. Organomet. Chem.* **2007**, 692, 136.

BET S.A. = $578 \text{ m}^2/\text{g}$ Calculated = $4652 \text{ m}^2/\text{g}$ Literature = not reported

Chahine rule capacities: Total grav. = 10.2 wt. % Total vol. = 60 g/L

Others MOFs in Pipeline

MOF Dashboard

We have developed a database to track promising compounds and share data

Collaborations

University of Michigan, Mechanical Engineering

Atomistic simulation and project management

University of Michigan, Dept. of Chemistry

Synthesis and characterization of targeted MOFs

Ford Motor Company (sub-contractor)

- PCT measurements
- Materials augmentation, characterization, scale-up, and system modeling

HSECoE (unfunded collaborator)

Assistance with system models

- Incorrect, incomplete, or disordered crystal structure data
 - Garbage in, garbage out
 - False positives in screening
- Structure collapse or incomplete solvent removal during activation
 - "Can it be made?"
 - Failure to achieve expected surface area and porosity
 - Which features control "pristineness?"
- Achieving absolute accuracy from computed isotherms
 - Trends and surface area appear to be reliable
 - Pseudo-FH force field appears to more accurately reproduce experimental isotherms than does MGS model

- Expand screening to additional compounds
- Explore influence of interatomic potential on accuracy of computed isotherms
- Explore strategies for maximizing *volumetric* surface area
- Optimize synthesis/activation of UMCM-4
 - Replicate predicted surface area
- Focus on 2nd go/no-go milestone
 - Identify MOFs with 15% improvement in H₂ capacity over MOF-5

Summary

- **New project**: underway for 8 months
- **Goal**: demonstrate MOFs that achieve high volumetric *and* gravimetric H₂ densities simultaneously (at cryogenic conditions)
 - Establish new high-water mark for H₂ storage in adsorbents
- **Approach**: High-throughput screening coupled to experimental synthesis, activation, and characterization

• Accomplishments:

- Replicated performance of BASF-supplied MOF-5 with home-made MOF-5
- 2,000+ MOF capacities screened computationally; several promising compounds identified
- 7 candidate MOFs synthesized and characterized
- Demonstrated IRMOF-20: surpasses usable capacity of MOF-5

The Team

Technical Backup Slides

Capacity Definitions

$$C_{tot} = C_{exc} + \frac{100 \times d_g V_{pore}}{1 + d_g V_{pore}}$$

$$V_{pore} = \frac{d_{sk} - d_{bulk}}{d_{sk} d_{bulk}}$$

Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials, V3.34, p.223

 C_{tot} = total adsorption capacity in wt.% C_{exc} = excess adsorption in wt.% V_{pore} = specific pore volume

d_g = density of H₂ gas at T,P d_{sk} = skeletal density d_{bulk} = bulk density

"Material" Hydrogen Capacity Definitions

MOFs Identified by Prior Screening

Several MOF "Targets of Opportunity" were identified

- Combine high gravimetric and volumetric densities
- Overlooked: no/limited experimental evaluation
- Can these be synthesized in a robust form?

	EPOTAF (SNU-21)	DIDDOK	LURGEL (TO-MOF)	ENITAX (IMP-9)
Total Grav. (wt. %)	11	10.2	9.7	9.3
Total Volumetric (g/L)	71	60	57	59
Crystal Density (g/cm ³)	0.58	0.53	0.53	0.57
Calc'd/Meas. SA (m²/g)	5208/700-900	4651	4386/680	4162
Notes	Best combination of grav. & vol. density. H ₂ uptake measured previously: 5 wt %	No measurements	CO ₂ uptake measured.	No measurements

 H_2 oba + bpe + $Zn(NO_3)_2 \cdot 6H_2O$

4,4'-Oxybis(benzoic) acid

trans-1,2-Bis(4-pyridyl)ethylene

Activated by:

- 1) Multiple solvent exchanges
- 2) Flowing scCO₂

BET S.A. = $578 \text{ m}^2/\text{g}$ Calculated = $4652 \text{ m}^2/\text{g}$ Literature = not reported

Kondo, M.; Irie, Y.; Miyazawa, M.; Kawaguchi, H.; Yasue, S.; Maeda, K.; Uchida, F. *J. Organomet. Chem.* **2007**, *692*, 136.

Idea:

- 1) Partially fill the pores of MOF-5 to increase surface area per volume
- 2) Maintain the same unit cell size, increase crystal density
- 3) Aim to increase H_2 volumetric density while keeping gravimetric density

Activated by:

- 1) Multiple solvent exchanges
- 2) RT vacuum drying

BET S.A. = 3171 m²/g

Literature = $3500 \text{ m}^2/\text{g}$

Koh, K.; Wong-Foy, A. G.; Matzger, A. J. *J. Am. Chem. Soc.* **2010**, *132*, 15005.