HyMARC: A Consortium for Advancing Solid-State Hydrogen Storage Materials

Mark D. Allendorf, P.I., Sandia National Laboratories June 8, 2016

Project ID: ST127

MARC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline	 Barriers A. System Weight and Volume E. Charging/Discharging Rates O. Lack of Understanding of		
Project Start Date: 9/17/2015	Hydrogen Physisorption and		
Phase 1 end date: 9/30/2018	Chemisorption		
BudgetFY15 DOE Funding:\$750KFY16 Planned DOE Funding:\$2,250KTotal DOE Funds Received:\$3,000K	 Partners Sandia National Laboratories Lawrence Livermore National Laboratory Lawrence Berkeley National Laboratory 		

Critical issues identified by PIs at NREL meeting, Jan. 2015: Sorbents

Target desorption enthalpy*: 15 – 20 kJ/mol

- Volumetric capacity at operating temperature is too low
- Increased usable hydrogen capacity needed
- Distribution of H_2 binding sites and ΔH at ambient temperature not optimized

Metal hydrides

Target desorption enthalpy*: $\approx 27 \text{ kJ/mol H}_2$

- Limited reversibility and slow kinetics not understood
- Role of interfaces and interfacial reactions
 - Solid-solid
 - Surfaces
- Importance and potential of nanostructures

*DOE Engineering Center of Excellence

Source: DOE Hydrogen Storage Materials Database

Objective: accelerate discovery of breakthrough storage materials by providing **capabilities** and **foundational understanding**

Foundational understanding of phenomena governing thermodynamics and kinetics limiting the development of solid-state hydrogen storage materials

HyMARC will deliver community tools and capabilities:

- **Computational models and databases** for highthroughput materials screening
- New characterization tools and methods (surface, bulk, soft X-ray, synchrotron)
- **Tailorable synthetic platforms** for probing nanoscale phenomena

Theory, simulation, & data Outrolled synthesis In situ characterization In the situ charac

Approach: HyMARC tasks target thermodynamics and kinetics

Effective thermal energy for H₂ release:

$$\Delta E(T) = \Delta H^{\circ} (T) + E_{a}$$

Thermodynamics

Kinetics

Task 4: Solid-solid interfaces

Task 5: Additives and dopants

Task 6: Materials informatics

Bond chemistry

Technical approach: Organizational structure of Core Lab Team

Technical approach/Modeling capabilities: high-performance National Lab computing allows simulations at all relevant length scales

Technical approach/storage materials: <u>build and validate capabilities</u> using simple "model" systems, then progress to higher complexity

	Increasing co	mplexity
--	---------------	----------

Binary hydrides	→ "Simple" Complex hydrides	\rightarrow Complex systems, e.g. Mg(BH ₄) ₂
	Phase segregation	"Molecular" species (e.g. B ₁₂ H ₁₂)
	Bulk → Nano	
	Graphene nanobelts, templ	ates, colloidal synthesis

Technical approach/Synthesis capabilities: bulk materials, dopants, sorbants, and nano-scale platforms

Technical approach/characterization: state-of-the-art tools probing bulk and surface chemistry, microstructure, phase composition

Progress toward FY16 Milestones

Milestone	Description	Status	(% comp	olete)
		SNL	LLNL	LBL
Q1 FY16	Synthesis: prepare library of bulk-phase model storage systems for T1-T5	100	100	100
Q2 FY16	Synthesis: Size control method for one prototype complex hydride nanostructure	100	100	100
Q3 FY16	Characterization: Demonstrate in-situ soft X-ray AP-XPS, XAS, XES tools, with sample heating	33	33	33
Q4 FY16	Characterization+Theory: Identify hydride mobile species and diffusion pathways	25	25	50
Q4 FY16	Synthesis+Characterization: Synthesize library of nanoparticles: 1 – 5 nm, 5 – 10 nm, >10 nm for one prototype hydride	50	50	50

Details to follow in consortium partner presentations

Accomplishments: Overall Project Level

- **Overview Webinar describing HyMARC on 1/7/2016**
- Staffing: postdocs
 - Sandia: James White (Princeton, chemistry). Storage material synthesis and characterization
 - LLNL:
 - ShinYoung Kang (MIT, materials science). First-principles free energy calculations
 - Patrick Shea (Dalhousie Univ. physics). Multiscale transport kinetics
 - LBL: Yi-Sheng Liu (Tamkang Univ., physics). Soft X-ray spectroscopies
- **BES User Facilities**
 - Molecular Foundry (LBL): user proposal approved Foundry
 - Electron microscopy, computational tools, nanoscale synthesis, various spectroscopies
 - Advanced Light Source (LBL): "Approved Program" submitted
 - Would provide dedicated time for 3 years
 - Spallation Neutron Source (Oak Ridge): user proposal submitted for use of VISION vibrational spectrometer
- Participated in gas sorption round robin coordinated by NREL

Thermodynamics (Task 1): overview and accomplishments

Establishing structure-property relationships governing hydrogen uptake and release

Objectives

- Accurate H₂-sorbant interaction potentials
- Particle morphology & additives in thermo models
- Alloying, amorphization to shift equilibria
- Potential of nanoscaling

Capabilities

- Quantum Monte-Carlo
- New ultrahigh-pressure reactor (>700 bar)
- MOFs, porous carbon synthesis

PI team

- Sandia: Stavila (Task lead), Allendorf
- LLNL: Baumann, Bonev, Campbell, Heo, Morales-Silva, Lee, Wood
- LBL: Urban, Fischer (UC-Berkeley), Somorjai

Key Results

- MOF suite for high-P sorption measurements
- High Ti dopant effect on NaAlH₄ thermodynamics
- Single-step hydriding of Li₃N@nanocarbon Manuscript under review

Kinetics of mass transport (Task 2): overview and accomplishments

Multiscale computational modeling with spatially resolved characterization

Objective: Identify fundamental processes and rate-limiting steps in mass transport

Capabilities

- Ab initio and classical MD
- Kinetic Monte Carlo (kMC)
- Phase-Field Modeling (PFM)
- Low Energy Ion Scattering (LEIS)
- Soft X-ray microscopies

PI team

LLNL: Heo (Task lead), Wood **SNL:** Zhou, Kolasinski, El Gabaly

Key Results

- Robust classical MD for H diffusion X. Zhou et al. on line J. Phys. Chem. C 2016
- Preliminary mesoscale surface H diffusion model

Atomistic modeling of H diffusion

Mesoscale modeling of surface H diffusion

Surface chemistry (Task 3): overview and accomplishments

Multi-technique approach to provide comprehensive picture of key properties/phenomena

Objectives

- Probe both thermodynamics and kinetics
- Data for model development
- New sample handling capabilities
- Methods specific to storage materials
- Realistic sample formats wherever possible

Capabilities

- Low Energy Ion Scattering (LEIS)
- XPS, AES
- Soft x-ray tools: AP-XPS, XAS

PI team

- Sandia: Kolasinski (Task lead), El Gabaly
- LLNL: Heo
- LBL/ALS: Guo (ALS), Prendergast (MF), Fischer (Berkeley)

Key Results

- Proof-of-concept: surface diffusion data using LEIS
- Clean transfer system: air-free XPS/AP-XPS
- In-situ, real-time surface composition monitoring

Internal interfaces (Task 4): overview and accomplishments

Computational models, characterization tools, and methods designed for storage materials

Objectives

- Interface energetics and dynamics using LLNL Phase Field Modeling approach and other codes
- Phase/composition using new X-ray microscopies (2 – 25 nm resolution)
- Experimental methodologies needed to apply new diagnostic tools

Capabilities

- ALS soft X-ray tools
- SNL, LLNL, MF/NCEM TEM

PI team

- LBL: Urban (Task lead), Guo, Prendergast
- LLNL: B. Wood, T.-W. Heo, J.Lee
- Sandia: F. El Gabaly, X. Zhou, V. Stavila

Key results

- First STXM measurements
- Phase-field model predictions compare favorably with experiment

D. A. Shapiro, et al., Nature Photonics, 2014

Additives (Task 5): overview and accomplishments

New material platforms to provide atomic-scale control of additives

Objectives

- Determine catalytic activity of bulk catalysts
- Create new material platforms for probing effects of additives
- Evaluate influence of acidic sites on H₂ adsorption

Capabilities

- XPS, AES, LEIS, electron microscopies
- Soft X-ray methods

PI team

Sandia: L. Klebanoff (Task lead), R. Kolasinski, V. Stavila

- LBL: F. Fischer, G. Somorjai, J. Urban
- LLNL: B. Wood, J. Lee

Key results

- XAS, XES shown sensitive to low mole % additives
- Assessed catalytic activity of bulk TiCl₃ and TiF₃
- Synthesized Al-Doped silicate model systems for probing acid-base catalysis

Metal-functionalized Graphene Nanobelts

Brønsted and Lewis acid sites

Toward the hydrogen storage materials genome (Task 6): summary

Community tools and databases to accelerate materials discovery

Database activities are scheduled to ramp up in Y2 & Y3

Collaborations external to HyMARC

Theory

- QMC calculations require relaxed geometries, requiring high-level *ab initio* methods
 - Strategy: established collaboration with Prof. Martin Head-Gordon (UCB/LBL)
- Experimental data concerning time evolution of internal interfaces is unavailable
 - Strategy: develop soft x-ray microscopies to image these
- Unknown sensitivity analysis input parameter ranges for hydrides
 - Strategy: use materials testing and high-accuracy simulations of simple hydrides to inform reasonable input ranges

Synthesis

- Narrow size distribution of hydride nanoparticles
 - Strategy: use host materials will narrow pore size distribution
- Achieving high density of acid sites in a realistic material
 - Strategy: learn from doped silicas and translate to carbons or MOFs

Characterization

- X-ray microscopies at LBL/ALS not configured for air-free sample handling
 - Strategy: Air-free sample holder design under development
- ALS is a user facility; hence access is limited
 - Strategy: submit proposals to SLAC and Canadian Light Source/Saskatoon for time

Proposed future work

Milestone	Description	Current status
Q3 FY16 PM	Characterization: Demonstrate in-situ soft X-ray AP-XPS, XAS, XES tools, with sample heating	67 (33)
Q4 FY16 PM	Characterization+Theory: Identify hydride mobile species and diffusion pathways	100 (25)
Q4 FY16 SMART	Synthesis+Characterization: Synthesize library of nanoparticles: 1 – 5 nm, 5 – 10 nm, >10 nm for one prototype hydride	100 (50)
Q5 FY17 PM	Theory: Compute H ₂ binding curves by QMC for inclusion in database	100 (15)
Q6 FY17 PM	Theory: Perform sensitivity analysis of local binding and second-sphere effects	100 (0)
Q6 FY17 Go/No-go	Sorbents: rank improvement strategies: open metal sites; acid sites; polarization effects; phase change materials. Decision criterion: select 2 with greatest potential for increasing ΔH°	100 (10)

PM = Progress milestone

Summary

- HyMARC is up and running!
- Testing and development of new computational tools underway:
 - Quantum Monte Carlo
 - Charge and field effects model
 - DFT thermodynamics prediction protocol
 - Phase nucleation, phase fraction, interfaces
 - Ab initio molecular dynamics
 - Multiscale surface chemistry
 - Phase-field code

New synthetic capabilities are being developed and tested:

- Graphene nanobelts (LBL)
- Acid-functionalized sorbents
- Size-tunable hydrides in porous carbon hosts
- Sorbent suite (MOFs and porous carbons)
- Advanced characterization tool development well underway
 - Soft x-ray techniques at Advanced Light Source (hardware, sample handling, theory)
 - Surface chemistry characterization suite already generating new insights
 - User proposals submitted to Molecular Foundry, ALS, and SNS/VISION

Our definition of success:

- 1) Significant advances in foundational understanding that accelerate materials discovery
- 2) Community tools, including predictive multiscale models, high-resolution in-situ characterization tools, material synthesis, and databases

We gratefully acknowledge EERE/FCTO for financial support!

