

Hydrogen Storage Materials Advanced **Research Consortium: Sandia Effort**

Vitalie Stavila, Lennie Klebanoff, Rob Kolasinski, Farid El Gabaly,

Xiaowang Zhao, James White, Mark Allendorf

Sandia National Laboratories, Livermore, CA, USA Annual Merit Review Meeting, Arlington, VA – 8 June, 2016

confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 09/17/2015
- Project end date: 09/30/2018

SNL R&D Budget

- FY15 Funding Level: \$250K
- FY16 Funds: \$1.175M
- Total DOE Funds: \$1.175M

Barriers

- Lack of Understanding of Hydrogen Physisorption and Chemisorption (Barrier O)
- System Weight & Volume (Barrier A)
- Cost, Efficiency, Durability (Barrier F)
- Charge/discharge rates (Barrier E)

HyMARC Partners

Relevance

Develop **foundational understanding** of phenomena governing **thermodynamics** and **kinetics** of hydrogen release and uptake in all classes of hydrogen storage materials

Sandia's objectives/responsibilities within HyMARC:

- \Rightarrow provide gas sorption and other property data required to **develop and validate thermodynamic models** of sorbents and metal hydrides, including the effects of 350 and 700 bar H₂ delivery pressures
- ⇒ identify the **structure, composition, and reactivity** of gas-surface and solid-solid hydride surfaces contributing to rate-limiting desorption and uptake
- ⇒ synthesize **metal hydrides and sorbents** in a variety of formats (e.g. bulk powders, thin films, nanostructures) and **develop** *in situ* **techniques** for their characterization
- ⇒ apply SNL **multiscale codes to discover new material**s and new mechanisms of storing hydrogen, provide input for database development

Theory/modeling	Synthesis	Characterization
DFT, Classical MD, database development	MOFs, bulk and nanoscale metal hydrides, high- pressure H ₂ synthesis	LEIS, porosimetry/gas sorption, in situ XRD, FTIR, XPS, soft X-ray synchrotron techniques

Approach: Sorbents

Identify a library of structural motifs for computing interaction potentials and provide hydrogen absorption/desorption isotherm data to develop validated theory models

High accuracy modeling of the effects of:

- open coordination sites, polarizable groups, acid-base functionality, flexibility, gate-opening phenomena and morphology (particle size, core-shell geometry, etc.)
 - Only limited H₂ adsorption data are available in the literature (typically at 77 K)
 - Measure reliable H₂ adsorption isotherms at various temperatures (with NREL)

MOF	Characteristic
MOF-5, MOF-177	High surface area; Zn-carboxylate structure
HKUST-1, PCN-14, NOTT-(100-103)	Open Metal Sites; Cu-carboxylate structure
M-DOBDC (M=Mg, Co, Ni, Zn)	Open Metal Sites; 1-D pores; constant topology
Mn-BTT, ZIF-8	Nitrogen heterocycle linkers

QMC calculations are underway for MOF-5, MOF-505 and NOTT-100

Approach: Metal hydrides

Understand thermodynamic and kinetic limitations of bulk and nanoscale metal hydrides through a combination of multiscale modeling, synthesis and *in situ* characterization.

Bulk hydrides:

- ⇒ enable reversibility by suppressing unfavorable reaction pathways or eliminating phase transitions (as in interstitial hydrides)
- ⇒ assess whether reaction entropies could be used to counteract large enthalpic changes via crystalline-to-amorphous transitions

Nanoscale hydrides:

- ⇒ control desorption thermodynamics by eliminating intermediate reaction steps
- ⇒ alter thermodynamics relative to bulk through surfaces and interfaces (particle size/shape, defects, lattice distortions, grain boundaries, solidstate phases)
 With LLNL, LBNL and ALS

Control: *Reversibility, reaction rates, hydrogen purity*

-5-

Sandia's technical roles within HyMARC

- High-pressure characterization of hydride and sorbent interactions with H₂ (up to 100 MPa H₂)
- Synthesis and characterization of porous Metal-Organic Frameworks and doped carbons
- High-throughput MD calculations to determine diffusion energy barriers using LAMMPS, a code developed at Sandia for large domain parallel computing
- Materials characterization with surface-sensitive techniques such as Low Energy Ion Scattering, X-ray Photoelectron, X-ray Absorption and Auger Spectroscopy
- Spectroscopic and soft X-rays methods to decipher how additives promote H₂ storage reactions

Large-scale Atomic/Molecular Massively Parallel Simulator

High-pressure H₂ station (up to 1000 bar)

Sandia high-pressure station

Redesigned and upgraded the high-pressure hydrogen station (up to 100 MPa H₂)

- Determine the effect of H₂ pressure on reversibility of metal hydrides
- Study stability of sorbents at high H₂ pressures

Clean transfer system for XPS and LEIS

Designed and built two holders for anaerobic transfer of samples

- Designed and fabricated at SNL
- Transfer of samples under inert atmosphere
- Compatible with XPS systems at SNL and ALS

Thermodynamics (Task 1): Bulk metal hydrides

Understand the factors controlling the enthalpy ΔH° and entropy ΔS° of H₂ adsorption and desorption and to develop validated models for computational materials design.

Effect of doping on thermodynamics FY16 model system: Ti-doped NaAlH₄

- ⇒ What governs the thermodynamics of H₂ uptake and release in sodium alanate?
- ⇒ Can entropic effects (bulk, surface, interfacial) alter the overall thermodynamics?
- ⇒ What is the effect of titanium on the plateau pressure?
- **Goal**: develop a validated multi-scale theory model of H_2 release and absorption

$$3NaAIH_4 \implies Na_3AIH_6 + 3AI + 3H_2$$

 $Na_3AIH_6 \implies 3NaH + AI + 3/2H_2$

The role of titanium in sodium alanate is still poorly understood. Ti not only enables reversibility and accelerates kinetics, but it also affects the equilibrium pressure of H_2 .

Tasks 1, 3 and 4: XPS of TiCl₃-doped NaAlH₄

XPS data obtained using the HyMARC-developed clean transfer system

⇒ The XPS data confirms the surface of TiCl₃-doped sodium alanate is oxygen-rich ⇒ Al 2p region shows oxide, hydride, and metal; dehydrogenated material is Al⁰-rich

Tasks 1,3 and 4: *In situ* LEIS experiments demonstrate capability to track surface composition of Ti-doped NaAlH₄

Approach: We pressed a NaAlH₄ powder (doped with 2mol% TiCl₃) into a Pb-alloy foil and monitored the surface composition during thermal desorption using LEIS.

With LEIS, we directly observe H segregation to the surface at ≈150 °C as the hydride begins to rapidly desorb H₂. The surface becomes enriched with Na during the heating. This is confirmed by the surface composition revealed by the ion energy spectra below at 60 and 250 °C.

Task 2: Mass transport

MD simulations of hydrogen diffusion in aluminum

Conventional Atom Jump Methods

 Huge number of jumps (different chemistry, numbers of neighbors, locations with respect to defects, etc.)

e.g., jumping atom can have different neighboring species

- Unclear new mundreds of thousands of diffusion paths (barriers) relate to an overall experimental diffusion behavior
- Dynamic evolution of structures not allowed

Advantages of MD Methods

- History of mean square displacement
- Sufficient for constructing the Arrhenius equation

X. W. Zhou, F. El Gabaly, V. Stavila, M. D.
 Allendorf, J. Phys. Chem. C, 2016, v. 120, p. 7500.

 \Rightarrow Developed MD methods to accurately predict hydrogen diffusion barriers in aluminum

Tasks 1 and 4: Nanoscale effects in metal hydrides

Use nanostructuring to improve kinetics, alter the reaction pathways, and elucidate the effects of particle size/shape, defects and nanointerfaces

FY16 model system: $LiNH_2 + 2LiH \implies Li_3N + 2H_2$

- \Rightarrow Can the thermodynamics of H₂ uptake and release be altered through nanostructuring?
- \Rightarrow What is more important: particle size or interactions with porous hosts?
- \Rightarrow What is the effect of nanointerfaces?

- ⇒ Developed infiltration approaches for metal hydride nanoparticles into lightweight porous carbons and metal-organic frameworks (MOFs)
- \Rightarrow Achieved stable Li₃N and LiNH₂ nanoparticles inside mesoporous carbons (pores of 3-12 nm) and microporous MOFs (e.g. 1.2 nm pores of MOF-74(Mg))

Task 4: Nanointerface engineering

Bulk:

 $Li_3N + H_2 \rightleftharpoons Li_2NH + LiH$ $Li_2NH + LiH + H_2 \rightleftharpoons LiNH_2 + 2LiH$

(work of P. Chen, D. Chandra, B. David, et al.)

Nano (Li₃N in 3-10 nm nanoporous C): Li₃N + 2H₂ \implies LiNH₂ + 2LiH

- ⇒ The Li₃N@C nanocomposite displays a reversible H_2 capacity of 4 wt% H.
- ⇒The full cycling capacity in the Li₃N/[LiNH₂ + 2LiH] system is realized at 250 °C, which is 180 °C lower compared to bulk.

Multiscale modeling (B. Wood et al, LLNL) revealed that nanoconfinement of the highcapacity $Li_3N/[LiNH_2 + 2LiH]$ system fundamentally alters the reaction pathways as a direct consequence of solid-solid nanointerfaces within the material.

In collaboration with Mahidol University, LLNL, LBNL, NIST (T. Udovic)

Submitted for publication

Task 3: Multi-technique approach provides comprehensive picture of storage material surface chemistry

Problem: Adsorption at the surface is an initial (potentially rate-limiting) step for hydrogen-uptake by storage materials. The present understanding of surface chemistry is inadequate for predicting hydrogen uptake and release.
Technical Approach: We apply advanced surface characterization tools to practical storage materials. This work guides more detailed experiments and modeling to reveal underlying surface processes (e.g. chemisorption, surface diffusion).

: HYMARC

Task 3: LEIS measurements of H₂ diffusion

We seek to answer:

National aboratories

• How does surface diffusion contribute to recombination / surface-bulk transport?

Prevailing technique can't be used: Laser-induced thermal desorption (LIDT) involves rapid laser heating to ~1200 °C, compatible with high melting materials (e.g. Ru, W.). Hydrogen storage materials are low-melting: e.g., Mg sublimes at 450 °C.

Our Approach: Explore potential for making surface diffusion studies without sample heating with ion-based techniques:

(a) Dose surface with atomic hydrogen. (b) Clear a well-defined region using Ne⁺ beam.
(c) Monitor H diffusion into region with LEIS. LEIS can measure surface diffusion. ✓

Task 5: Catalytic additives

Philosophy: The current situation with the role of catalytic additives is complicated. Consequently, we must begin with simple systems that allow definitive conclusions to be made and enable multiscale theory model validation

⇒ Assess first how additives themselves in bulk form react with H_2 ⇒ Examine the known catalytic additives TiF₃ and TiCl₃ for reaction with hydrogen at 200 °C, 120 bar for ≈17 hours with Sieverts H₂ uptake, X-ray absorption spectroscopy and FTIR

-- negligible change in TiF_3 vibrational structure with FTIR, negligible H_2 uptake seen with Sieverts.

-- negligible change in Ti electronic structure with XAS in fluorescence yield mode, No evidence of Ti metal or oxide

Milestones and future work

Milestone	Description	Status/Propos ed completion
1	Synthesize library of bulk-phase model storage systems for use in Tasks 1-5	Q1 FY16 (100% complete)
2	Size control method for one prototype complex hydride nanostructure	Q2 FY16 (100% complete)
3	Demonstrate <i>in-situ</i> soft X-ray AP-XPS, XAS, XES tools, with sample heating	Q3 FY16 (50% complete)
4	Characterization+Theory: Identify hydride mobile species and diffusion pathways	Q4 FY16 (50% complete)
5	Synthesis+Characterization: Synthesize library of nanoparticles: 1 – 5 nm, 5 – 10 nm, >10 nm for one prototype hydride	Q4 FY16 (75% complete)

MARC

Summary: Progress and accomplishments

Modeling

 A molecular dynamics modeling framework was established to accurately predict the diffusion kinetic barriers; proof-ofconcept demonstrated for H-diffusion in Pd and Al.

Synthesis

- Sandia high-pressure (up to 1000 bar) system was upgraded
- Identified model MOFs for GCMC and QMC studies to calculate interaction potentials and predict H₂ isotherms
- Initiated a comprehensive study of titanium role in sodium alanate and determined the effect of Ti-doping levels on hydrogen plateau pressure
- Elucidated the H₂ reactivity of TiCl₃ and TiF₃ additives by themselves (no hydride present)
- Developed synthetic protocols for synthesizing ≤ 10 nm particles of LiNH₂/2LiH in nanoporous carbons and MOFs

Characterization

- Demonstrated that LEIS can measure surface diffusion
- Developed clean anaerobic techniques for sample transfer for XPS, Auger, XAS and LEIS *in situ* studies

Sandia team and responsibilities

Mark Allendorf (MOFs, hydrides)

Vitalie Stavila (Sorbents, hydrides)

Rob Kolasinski (LEIS techniques)

Lennie Klebanoff (catalysis, surfaces)

Farid El Gabaly (Soft X-ray techniques)

Xiaowang Zhou (MD simulations)

James White (TEM, SEM, XPS)

Jon Zimmerman (interface and defect modeling)

IARC

T. Udovic and C. Brown (NIST): Neutron diffraction/spectroscopy on sorbents and hydrides
 - exchanged >12 samples for neutron diffraction and NVS studies

- > T. Autrey and M. Bowden (PNNL): NMR and TEM of metal borohydrides
 - Exchanged samples, site visits in November 2015 and April 2016
- ➤ M. Head-Gordon and J. Long (LBNL): H₂ physisorption sites in MOFs
- > T. Gennett and K. Hurst (NREL): accurate hydrogen isotherm measurements
- Viktor Balema (Sigma-Aldrich/Merck): synthesis of metal hydrides, mechanochemistry
- > E. Majzoub (UMSL): PEGS, nanoscale effects in metal hydrides
- > J.J. Vajo (HRL): Synthesis and characterization of ternary borides and borohydrides
- > P. Pakawatpanurut (Mahidol University, Thailand): synthesis of nanoscale metal amides
- S. Kaskel (Technische Universität Dresden, Germany): High-surface area MOFs
 - a student from Prof. Kaskel's group visited Sandia for 6 weeks to develop new sorbents

HyMARC collaboration and funding partners

Thank you for your attention!

We gratefully acknowledge EERE/ FCTO for financial support!

Energy Efficiency & Renewable Energy

-22-

Technical Back-Up Slides

Surface characterization of Ni-doped MgH₂

We seek to answer:

- What are the surface composition & oxidation states of as-prepared hydrides? Are they different from bulk? What happens when the material is cycled?
- How do additives affect dissociation / chemisorption of H?

<u>Approach</u>: Powders pressed into metal foil in glove box, analyzed without air exposure using clean sample transfer.

Ion energy spectrum reveals both D2 and D adsorb on the surface. This suggests the Ni dopant promotes D_2 dissociation.

LEIS is the <u>only</u> element-specific 0.35 way to detect adsorbed hydrogen. AES reveals composition within first ~ 10 nm of the surface, including adsorbed impurities (O,C)

-24-

LEIS spectra of TiCl₃-doped NaAlH₄

Surface composition measured using AES and LEIS

An initial AES survey of the surface revealed the presence of chemisorbed O and C. The surface appeared to be enriched in Na; we also detected the presence of chlorine.

We were able to sputter through the oxide layer using a Ne⁺ ion beam. An LEIS spectrum of the cleaned surface reveals the presence of Na, Al, and Cl.

The surface of ball-milled $TiCl_3$ -doped sodium alanate (2mol% Ti) is rich in sodium and seems to be oxygen terminated.

High-accuracy Al-H bond order interatomic potentials

<u>Significant improvement</u> over known potentials:

- Captures the high stacking fault energy of aluminum (many literature potentials fail).
- •Captures energy and volume trends of many aluminum phases.
- •Captures energy and volume trends of many Al-H phases.

National Laboratories

Aluminum Phases

X.W. Zhou, D.K. Ward, M. Foster, J.A. Zimmerman, J. Mater. Sci., 2015, vol. 50, p. 2859.

-26-

MD simulations of evolving structures

Impact of MD methods on the diffusion problems in solid-state hydrogen storage materials

- Experimental measurement of diffusion barriers in constantly changing structures is challenging
- Our MD methods accurately determine diffusion barriers for evolving structures
- As an example, we show that the linear "Arrhenius" behavior does not persist during PdH, hydriding (i.e., when composition x is increasing)

Arrhenius vs. non-Arrhenius type behavior

- Curved Arrhenius plots indicate simultaneous occurrence of multiple diffusion event
- The MD diffusion data can be successfully fitted to a two-mechanism model (solid lines in Arrhenius plots):

$$D = D_{0,1} \cdot \exp\left(-\frac{Q_{0,1}}{kT}\right) + D_{0,2} \cdot \exp\left(-\frac{Q_{0,2}}{kT}\right)$$

With LLNL, LBNL and ALS

Arrhenius Plots

-27-

0.2

hydrogen mole fraction X

0.22

diffusion barrier Q (eV) 0.18 0.19 0.17 0.17 0.17

0.10

0.0

temperature (K)

High-surface area MOFs

A graduate student from Kaskel's group visited Sandia in February-March 2016 to develop hybrid MOF materials for hydrogen storage

Sandia

National Laboratories

-28-