2016 DoE Hydrogen and Fuel Cells Program Review

Hydrogen Storage Characterization and Optimization Research Effort

Jeffrey Long and Martin Head-Gordon

Materials Sciences Division

Lawrence Berkeley National Laboratory

June 8, 2016

Project ID #: ST133

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

□ Start: October 2015

□ Finish: September 2018

Budget

Project Start Date: 10/01/2015FY16 DoE Funding:

- \$795k
- $\hfill\square$ DoE funding received to date:
 - \$795k
- □ Matching fellowship support:

– \$197k

NREL: syi DNNIL: ma

- □ NIST: neutron diffraction
- Project lead: Thomas Gennett (NREL)

Barriers Addressed

□ A. System Weight and Volume

Partners

- $\hfill\square$ LBNL: IR, synthesis, and modeling
- □ NREL: synthesis and measurements
- □ PNNL: modeling and NMR

Relevance

Project objectives

- Develop *in situ* infrared spectroscopy as a tool for characterizing emerging H₂ storage materials that may allow for a driving range greater than 300 miles.
- Materials sought with the potential for meeting the DoE targets of reversible uptake:
 - 2020 targets: 5.5 % H₂ by mass, volumetric capacity of 40 g/L
 - "ultimate full fleet" targets: 7.5 % H₂ by mass, 70 g/L.
- Validate new concepts for H₂ storage mechanisms in adsorbents.
- Provide accurate computational modeling for H₂ adsorbed in porous materials.

This reporting period

• Research and development of metal-organic framework materials with high volumetric and gravimetric H₂ capacities (Barrier A).

Hydrogen Storage Characterization and Optimization Research Effort

Researchers at NREL, LBNL, PNNL, and NIST are tasked with supporting the DoE Hydrogen Storage Program through validation of:

- 1) Properties of emerging hydrogen storage materials
- 2) New concepts for hydrogen storage mechanisms
- 3) Computational methods for predicting hydrogen storage properties

LBNL:

- 1) IR spectroscopy with precise H_2 dosing at T = 10-300 K, $P \le 100$ bar
- 2) Mechanistic validation:

Can exposed cations in adsorbents reach target of $\Delta H = -15$ kJ/mol? Is it possible to adsorb two, three, or four H₂ per metal cation?

3) Accurate modeling of H_2 adsorbed within porous materials

Q2: Evaluate choices for various infrared spectrometer setups for *in situ* gas dosing. *100% complete*

Q3: Order DRIFTS instrument that will be best and most functional for the desired *in situ* H_2 -dosed experiments over a temperature range of 15-373 K and up to 100 bar hydrogen pressure at 298 K based on experience testing several similar instruments. *100% complete*

Q4: Complete installation of the DRIFTS instrument and demonstrate that the DRIFTS instrument is operating with a resolution of 10 cm⁻¹ by measuring spectra for a sorbent standard and comparing with accepted published data. *0% complete*

In Situ Infrared Spectroscopy

Infrared spectroscopy with *in situ* gas dosing probes behavior of adsorbed species
 Allows investigation of adsorption in crystalline and non-crystalline materials

Fitzgerald, Churchill, Korngut, Simmons, Strangas Rev. Sci. Instrum. 2006, 77, 093110

In Situ Infrared Spectroscopy

H₂ molecules adsorbed on different sites have different infrared energy shifts
 Shift of H₂ signals correlates to changes in isosteric heats of adsorption
 Measurements at multiple temperatures yield site-specific enthalpies of adsorption

Kapelewski, Geier, Hudson, Stuck, Mason, Nelson, Xiao, Hulvey, Gilmour, FitzGerald, Head-Gordon, Brown, Long J. Am. Chem. Soc. 2014, 136, 12119

Relevance: DoE 2020 Hydrogen Storage System Targets and FY16 Project Targets

DoE 2020 Storage Targets

gravimetric capacity	5.5 wt % H ₂	the most promising st
volumetric capacity	40 g H ₂ /L	(PAFs) or block copol electronic structure ca
operating temperature	–40 to 60 °C	and dispersion correct
maximum pressure	100 bar (project	Q2: Synthesize a pore with metal-chelating s at least 1000 m ² /g. 10
	target)	Q3: Synthesize and c with catechol function
refueling rate	1.67 kg H ₂ /min	unsaturated metal cer matrix. <i>95% complete</i>
cycle life	1500 cycles	Q4 Go/No-Go: Demo molecules to one met
cost	\$333 per kg H ₂	framework, porous are material. 100% compl

FY16 Targets

	Q1: Computational chemists will initiate investigation of the most promising structures for the desired pore domain size and chemistry within porous aromatic frameworks (PAFs) or block copolymer, (BCP) using first-principles electronic structure calculations with range separation and dispersion corrections. <i>100% complete</i>
t	Q2: Synthesize a porous aromatic frameworks material with metal-chelating sites and a Langmuir surface area of at least 1000 m ² /g. <i>100% complete</i>
	Q3: Synthesize and characterize a carbon based sorbent with catechol functionalized pore domains that contain unsaturated metal centers attached to the materials matrix. <i>95% complete</i>
<u>.</u>	Q4 Go/No-Go: Demonstrate the ability to bind two H ₂ molecules to one metal center in a metal-organic framework, porous aromatic framework, or carbon-based material. <i>100% complete</i>

 $\hfill\square$ MOFs can meet volumetric capacity in relevant temperature range if multiple $\rm H_2$ molecules can be bound to each metal center

http://energy.gov/sites/prod/files/2015/05/f22/fcto_myrdd_storage.pdf

Approach: Metal-Organic Frameworks

Zn₄O(1,4-benzenedicarboxylate)₃ MOF-5

BET surface areas up to 7100 m²/g

Densities as low as 0.13 g/cm³

Tunable pore sizes up to 10 nm

Channels connected in 1-, 2-, or 3-D

Internal surface can be functionalized

Can these high-surface area materials be used for hydrogen storage at ambient temperatures?

Yaghi et al. *Nature* **2003**, *423*, 705 Kitagawa et al. *Angew. Chem., Int. Ed.* **2004**, *43*, 2334 Férey *Chem. Soc. Rev.* **2008**, 37, 191

Hydrogen Storage in MOF-5

 \square At 100 bar and 77 K, a record physisorbed storage density of 66 g/L is achieved

 \Box At 298 K, framework offers little improvement over density of pure H₂ gas

Kaye, Dailly, Yaghi, Long J. Am. Chem. Soc. 2007, 129, 14176

A MOF with a High Density of Exposed M²⁺ Sites

□ Activated frameworks have Langmuir surface areas of 1277-2060 m²/g

A MOF with a High Density of Exposed M²⁺ Sites

□ Desolvation leads to square pyramidal M²⁺ centers with an open coordination site

12

Approach: Synthesis of a Structural Isomer of M₂(dobdc)

Kapelewski, Geier, Hudson, Stuck, Mason, Nelson, Xiao, Hulvey, Gilmour, FitzGerald, Head-Gordon, Brown, Long J. Am. Chem. Soc. 2014, 136, 12119

Strong H₂ Binding in Ni₂(*m*-dobdc)

 \Box High charge density at Ni²⁺ pulls H₂ close and gives record MOF binding energy

Kapelewski, Geier, Hudson, Stuck, Mason, Nelson, Xiao, Hulvey, Gilmour, FitzGerald, Head-Gordon, Brown, Long J. Am. Chem. Soc. 2014, 136, 12119

NREL: Temperature Programmed H₂ Desorption

 \Box H₂ desorbs from Ni₂(*m*-dobdc) at higher *T*, consistent with stronger binding

Close D₂ Packing within Ni₂(*m*-dobdc)

□ Greater charge density at Ni²⁺ gives closer packing for secondary adsorption site

Kapelewski, Geier, Hudson, Stuck, Mason, Nelson, Xiao, Hulvey, Gilmour, FitzGerald, Head-Gordon, Brown, Long J. Am. Chem. Soc. 2014, 136, 12119

High Pressure H₂ Adsorption in Ni₂(*m*-dobdc)

□ Below 100 °C, all isotherms show greater capacity than compressed H₂ at 25 °C □ Ni₂(*m*-dobdc) has a total capacity of 24 g/L of crystal at –75 °C and 100 bar

Increased H₂ Density in Ni₂(*m*-dobdc) at 100 bar

 \Box Ni₂(*m*-dobdc) shows increasing boost in capacity with decreasing temperature

Ni₂(*m*-dobdc) Berkeley/NREL Comparison

 \Box Collaboration with NREL used to verify H₂ isotherms in Ni₂(*m*-dobdc)

□ Data matches within error

Accomplishments: H₂ Volumetric Usable Capacity

20

H₂ Usable Capacities in g/L of Crystal

	Ni ₂ (<i>m</i> -dobdc)	Co ₂ (<i>m</i> -dobdc)	Ni ₂ (dobdc)	Co ₂ (dobdc)	MOF-5
25 °C, no swing	11.0	10.5	9.9	8.8	8.8
–75 °C, no swing	19.0	18.2	18.4	16.5	15.8
–40 to 25 °C	18.2	17.3	16.6	14.0	12.8
–75 to 25 °C	23.0	21.9	21.4	18.3	16.5
–75 to 100 °C	23.4	22.3	21.8	18.6	16.7

□ Values represent maximum capacity possible and will be reduced depending on packing

- \Box Ni₂(*m*-dobdc) is the top-performing adsorbent for these temperatures
- □ 23.0 g/L usable capacity for –75 °C to 25 °C swing represents **58% of system target**

High Pressure Neutron Diffraction in Co₂(*m*-dobdc)

$D_2 \cdots D_2$ interaction	distance (Å)
1…2	2.82(3)
2…2	3.02(3)
3…4	3.09(5)
4…5	3.48(3)
solid H ₂ *	3.20
liquid H ₂	3.61

*van Kranendonk, Gush Phys. Lett. 1962, 1, 22

 \square Seven distinct D₂ adsorption sites are observed at 78 bar and 77 K

Binding Multiple H₂ Molecules per Metal Cation

□ Volumetric capacity can be substantially increased while maintaining strong binding

Approach: Mn₂(dsbdc)

 \Box Isomer of Mn₂(dobdc) structure with sulfido groups in place of oxido

□ Crystal structure shows four-coordinate Mn²⁺ ions with two bound DMF molecules

Sun, Miyakai, Seki, Dincă. J. Am. Chem. Soc. 2013, 135, 8185

24

Structure of Desolvated Mn₂(dsbdc)

□ Desolvated structure of Mn₂(dsbdc) determined

□ Half of the Mn²⁺ ions exhibit four-coordinate, seesaw geometry

H₂ Adsorption in Mn₂(dsbdc)

Hydrogen uptake is not steep but has about the same capacity as Mn₂(dobdc)
 Binding enthalpy remains low for entire range of loadings

H₂ Adsorption in Mn₂(dsbdc)

 \square First demonstration of two H₂ molecules binding to a metal center in a MOF

Computational Results for Mn₂(dsbdc)

 $\hfill\square$ Shorter Mn–H $_2$ distances than observed experimentally

 $\hfill\square$ Modeling electronics of ligand is challenging for this structure type

28

Mn–H₂ Energy Decomposition Analysis

DFT Functional: B97M-V Basis set: def2-tzvp	
Interaction	Energy (kJ/mol)
Frozen	1.0
Polarization	-3.9
Charge Transfer	-8.4
ΔE (per H ₂)	-12.5

 $\hfill\square$ Interaction of H_2 with Mn^{2+} has double the binding enthalpy of experiment

□ New calculations are being run with updated crystal structure

Ca₂(dsbdc) Calculations

□ Interaction of Ca²⁺ with H₂ has a shorter H₂ M distance than in Mn₂(dsbdc) = 4.5

Variations on Mn₂(dsbdc) for Increased H₂ Capacity

Different metals in the four-coordinate sites may bind more H₂ more strongly

Ca₂(dsbdc) Synthesis Attempts

 \Box Most promising phase, first two peaks are close to Mn₂(dsbdc)

□ Lower angle peaks suggest a larger unit cell, as expected for larger Ca²⁺

Mixed-Metal Mn_{2-x}Ca_x(dsbdc) Synthesis

 $MnCl_2 + Ca(acac)_2 + H_4(dsbdc)$ in DMF/MeOH

Peaks match well with Mn₂(dsbdc), work underway to find Ca location □ 9.2% Ca replacement of Mn according to ICP analysis

Binding Multiple H₂ Molecules per Metal Cation

□ Volumetric capacity can be substantially increased while maintaining strong binding

Calculated Adsorption for H₂ at Catecholate-M²⁺

Aproach: UiO-68-catecholate-M²⁺

 $\hfill\square$ Deprotection upon MOF synthesis can expose catechols for metal insertion

 \Box Catecholate-bound M²⁺ cations can then bind multiple H₂ molecules

Deprotection to form UiO-68-catechol

□ Addition of water results in clean deprotection with no loss of crystallinity

□ Metalation of fully deprotected framework is in progress

Synthesis and Metalation of UiO-67-biphenol

□ Successful synthesis of ligand and deprotected MOF exhibiting UiO-67 structure □ Successful metalation with $Mg(C_4H_9)_2$ with ~50% incorporation by ICP

38

Synthesis of UiO-68-bis(biphenol)

 $\hfill\square$ Successful synthesis of ligand and deprotected MOF exhibiting UIO-68 structure

□ Metalation attempts are underway, two metals per ligand are possible

Predicted Capacities Upon Insertion of Ca²⁺

	volumetric (g/L of crystal)	gravimetric (wt %)
UiO-68-catechol	39	6.6
UiO-67-biphenol	42	4.6
UiO-68-bis(biphenol)	48	7.2

□ Predicted capacities based on 4 H_2/Ca^{2+} and H_2 packing in pores of $Ni_2(m-dobdc)$

 $\hfill\square$ Proof of principle for H_2 on metal centers and in pores

Responses to Previous Year Reviewers' Comments

This is the first year of this project, so there are no previous comments.

Collaborations

Project team:

 Lawrence Berkeley National Laboratory/UC Berkeley: Jeffrey Long: Synthesis and basic characterization of MOFs Martin Head-Gordon: Calculation and prediction of H₂ binding energies

- National Renewable Energy Laboratory: *Thomas Gennett* (Lead): Characterization
- Pacific Northwest National Laboratory: *Thomas Autrey*: Calculations and NMR spectroscopy
- □ National Institute of Standards and Technology: *Craig Brown*: Neutron diffraction and neutron spectroscopy

Additional collaborations:

 $\hfill\square$ Variable-temperature infrared spectroscopy with in situ $\rm H_2$ dosing

- Stephen FitzGerald (Oberlin College)

Remaining Challenges and Barriers

□ Desolvation of catecholate-bound metal cations remains a challenge

- \Box Synthesis of the Mn₂(dsbdc) analogs with Ca and Ni must be finalized
- Materials with a higher density of open metal cation sites must be identified to meet volumetric and gravimetric capacity targets

Proposed Future Work

- Test many different metalation and desolvation conditions for the catechol-containing frameworks
- \Box Narrow down synthetic conditions for Mn₂(dsbdc) analogs
- Metalate the high surface area porous polymers with metal-chelating sites
- Further research into new materials containing metal centers with open metal coordination sites is underway
- □ Install *in situ* infrared spectrometer and begin testing materials
- Continue to explore metal-H₂ interactions in real systems that have been realized experimentally

Technology Transfer Activities

 \Box The M₂(*m*-dobdc) patent application was previously submitted

□ Mosaic Materials, Inc. has developed an inexpensive, scalable synthesis of $Ni_2(m$ -dobdc) and is looking to commercialize this material

Summary

- □ Ni₂(*m*-dobdc) shows the best volumetric usable capacities of any porous solid for H₂ storage up to 100 bar at ambient temperatures
- Mn₂(dsbdc) is the first ever example of multiple
 H₂ molecules binding to a single metal center in a MOF!
- Synthesis of analogs of Mn₂(dsbdc) with higher binding enthalpies and more H₂ per metal are underway
- MOFs containing ligands with metal chelating sites have been synthesized and metalation is underway

46

Pacific Nort

Summary

Milestone	% complete
Q1: Computational chemists will initiate investigation of the most promising structures for the desired pore domain size and chemistry within porous aromatic frameworks (PAFs) or block copolymer, (BCP) using first-principles electronic structure calculations with range separation and dispersion corrections.	100%
Q2: Synthesize a porous aromatic frameworks material with metal- chelating sites and a Langmuir surface area of at least 1000 m ² /g.	100%
Q3: Synthesize and characterize a carbon based sorbent with catechol functionalized pore domains that contain unsaturated metal centers attached to the materials matrix.	95%
Q4 Go/No-Go: Demonstrate the ability to bind two H ₂ molecules to one metal center in a metal-organic framework, porous aromatic framework, or carbon-based material.	100%

Summary

Milestone	% complete
Q2: Evaluate choices for various infrared spectrometer setups for <i>in situ</i> gas dosing.	100%
Q3: Order DRIFTS instrument that will be best and most functional for the desired <i>in situ</i> H_2 -dosed experiments over a temperature range of 15-373 K and up to 100 bar hydrogen pressure at 298 K based on experience testing several similar instruments.	100%
Q4: Complete installation of the DRIFTS instrument and demonstrate that the DRIFTS instrument is operating with a resolution of 10 cm–1 by measuring spectra for a sorbent standard and comparing with accepted published data.	0%

Technical Back-Up Slides

+

Accomplishments: 77 K H₂ Isotherms in Ni₂(*m*-dobdc)

NREL measurements:

NATIONAL

ABORATORY

50

□ Data at 77 K shows Ni₂(*m*-dobdc) reaches 38 g/L, very close to system target □ NREL-measured isotherms at other temperatures verified LBNL data

Mn₂(dsbdc) Desolvation and Purity

□ Infrared spectrum indicates successful removal of all DMF in Mn₂(dsbdc)

High-Surface Area Porous Polymers for Metalation

