

H₂ Storage Characterization and Optimization Research Effort

Craig Brown (NIST), Terrence Udovic (NIST)

Jacob Tarver (NREL), Mirjana Dimitrievska (NREL) and Thomas Gennett (NREL)

National Renewable Energy Laboratory & National Institute of Standards and Technology

2016 DOE Annual Merit Review: June 8th, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline*

Start: October 2015 End: TBD % complete FY 16: ~65%

*previously a component of NREL's materials development program and supported annually since 2006

Budget

Funding FY16: \$250K*

* cost for scientists in residence at NIST.

Barriers addressed

Reversible Solid-State Material:

M. Hydrogen Capacity and Reversibility;

- N. Understanding of Hydrogen Physi- and Chemi- sorption;
- O. Test Protocols and Evaluation Facilities.

Collaborators

PNNL - Tom Autrey, Mark Bowden,LBNL - Jeff Long, Martin Head-GordonHyMARC – LLNL, SNL

- NREL leads a collaborative research effort involving NIST, LBNL and PNNL
 - Seek to employ and develop characterization capabilities at each facility to understand and enhance hydrogen storage media
 - Leverage each institute's unique strengths to jointly validate hydrogen storage claims and design strategies

Relevance: Impact

- Neutrons provide unique specificity towards determination of hydrogen properties
 - Enables identification of isotopically-labelled hydrogen location within complex structures
 - Enables identification of hydrogen dynamics within complex structures

Approach: Neutron Scattering

- (FY16) Utilize neutrons to characterize and validate hydrogen storage media
 - Neutron powder diffraction with precise D₂ loading at T > 4 K and P < 100 bar
 - Elucidate crystal structure of storage materials
 - Harness isotopic sensitivity of elastically scattered neutrons to locate chemi- and physisorption sites of deuterium
 - Inelastic neutron spectroscopy with precise H₂ loading at T > 4 K and P < 100 bar
 - Harness isotopic sensitivity of inelastically scattered neutrons to identify local environment for complex hydrides and chemi- and physisorbed hydrogen

Accomplishments and Progress: Oxocarbons

- Structure of bare and deuteriumintercalated ultramicroporous calcium oxalate (CaC₂O₄) probed using neutron powder diffraction
 - Strong correlation identified between D₂ loading pressure and storage capacity
 - Adsorption requires dosing at T > 175 K and
 P > 250 torr
 - Changes in diffraction pattern upon intercalation consistent with D₂ adsorption between Ca²⁺ and O²⁻ (more work is required to fully understand the data)

Neutrons locate adsorbed D₂ in ultra-micropores

Accomplishments and Progress: Oxocarbons

- Local dynamics of H₂ adsorbed in CaC₂O₄ probed using inelastic neutron spectroscopy (INS)
 - $_{\odot}$ Loading at low pressure (<250 torr) leads to weakly bound $\rm H_{2}$
 - Loading at atmospheric pressure (760 torr) leads to discrete localized adsorption sites
 - Peak near 10 meV consistent with transition from J=0 to to a sub-level of the J=1 rotational state of H₂
 - More detailed loading dependence and isotopic substitution should help assign remaining peaks to rotation or rotation+phonon coupled peaks

INS indicates adsorption of H₂ in ultra-micropores

NATIONAL RENEWABLE ENERGY LABORATORY

Accomplishments and Progress: Borohydrides

 Structural and phase dynamics in Mg(BH₄)₂ probed with inelastic neutron spectroscopy

Three potential polymorphs identified

Motivation: INS can be used as a fingerprint in non-crystalline environments

Accomplishments and Progress: Borohydrides

- Neutron vibrational spectra of different Mg(BH₄)₂ polymorphs
 - $_{\odot}~$ Measured at 4 K
 - Agreement established with onephonon and one+two-phonon densities of states simulated from first-principles phonon calculations of the DFT-optimized structures

Most intense peaks are due to H-motion: clear signature of different polymorphs

Pacific Northwes

9

Accomplishments : MOFS (Metal Organic Framework)

- Identify multiple H₂ binding at a metal site in a MOF
 - \circ Mn₂(dsbdc)
 - Successful desolvation and activation
 - X-ray and Neutron Diffraction
 - \circ D₂ adsorption sites determined.

D₂ and other gases have similar binding characteristics. Clear but weak interactions.

Mn can bind multiple gas molecules on

one metal site

Pacific Northwest

Accomplishments and Progress: MOFs

- Volumetric capacities at pressure in MOFs
 - Moderately high pressure neutron diffraction
 - Determine loadings and adsorption distributions in Co₂(mdobdc) and Ni₂(m-dobdc)
 - Refines to $3.5 D_2$:Co

Determine maximum crystallographic volumetric capacities independently from manometry

Rietveld refinement of neutron diffraction data for Co_2 (m-dobdc) at 78 bar D_2 pressure

Shorter than bulk D₂-D₂ distances

Accomplishments and Progress: Confined phases

- Determining products of hydrogenated Li₃N in nanoporous carbon
 - Neutron vibrational spectra associated with hydrogenated Li3N confined in nanoporous carbon (NPC) after 5 desorption/absorption cycles compared to reference spectra indicate that:
 - Relatively little H exists in the dehydrogenated spectrum (Li₃N in NPC)
 - Both LiNH₂ and LiH are present in the hydrogenated spectrum
 - Nanoconfinement fundamentally alters both the hydrogenation and dehydrogenation reaction pathways as a direct consequence of solid-solid nanointerfaces

INS used to identify hydrogen-containing phases that cannot be probed easily by other means

Neutron vibrational spectroscopy confirms that both LiNH_2 and LiH are hydrogenation products from carbonnanoconfined Li_3N , with no obvious presence of Li_2NH .

Collaborations

• NREL/NIST collaboration

 Characterizing ultra-microporous materials using neutron diffraction and neutron spectroscopy

• NREL/NIST collaboration with LBNL

- Characterizing hydrogen adsorption in metal organic framework materials using neutron diffraction and neutron spectroscopy
- Characterizing various hydrogen storage materials at the Advanced Photon Source

NREL/NIST collaboration with SNL

 \circ Developing spectroscopic signatures for Mg(BH₄)₂

• NREL/NIST collaboration with LLNL and SNL

- Identifying phases for complexes in pores
- Determining products of hydrogenated Li₃N in nanoporous carbon

- Finish work on current projects
 - Identify precise binding sites for hydrogen adsorbed in ultra-microporous oxocarbons. Establish influence of metal cation on binding distance and hydrogen capacity
 - Complete pressure dependence of volumetric capacities for MOFs
- Continue to advance the use of neutron scattering to validate materials and concepts
 - As determined through collaborations and discussion with EERE and HyMarc

Critical Assumptions and Issues

- Refinement of powder diffraction patterns for oxocarbons complicated by presence of additional phases
 - Need to determine whether additional phases stem from contaminants or represent polyphases of oxocarbon

Critical Assumptions and Issues

- Oxocarbons (specifically, CaC₂O₄) exhibit unusual behavior upon thermal cycling
 - In-situ x-ray diffraction at APS planned to measure structural changes upon activation, thermal cycling, and hydrogen dosing of oxocarbons

Publications

- Outlook and challenges from hydrogen storage in nanoporous materials. D. P Broom, C. J. Webb, K. E. Hurst, P. A. Parilla, T. Gennett, C. M. Brown, R. Zacharia, E. Tylianakis, E. Klontzas, G.E. Froudakis, Th. A. Steriotis, P. N. Trikalitis, D. L. Anton, B. Hardy, D. Tamburello, C. Corgnale, B. A. van Hassel, D. Cossement, R. Chahine, M. Hirscher. Appl. Phys. A. 122; 151, 2016.
- Hydrogen Storage in the Expanded Pore Metal-Organic Frameworks M₂(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn).
 Gygi, D.; Bloch, E. D.; Mason, J. A.; Hudson, M. R.; Gonzalez, M. I.; Siegelman, R. L.; Darwish, T. A.; Queen, W. L.;
 Brown, C. M.; Long, J. R. Chem. Mater. 2016, 28, 1128-1138.
- Dynamics of Pyramidal SiH₃⁻ Ions in ASiH₃ (A = K and Rb) Investigated with Quasielastic Neutron Scattering. C. Österberg, H. Fahlquist, U. Häussermann, C. M. Brown, T. J. Udovic, M. Karlsson, J. Phys. Chem. C 120, 6369, 2016.
- Hydrogen Storage and Selective, Reversible O₂ Adsorption in a Metal-Organic Framework with Open Chromium(II) Sites. Bloch, E. D.; Queen, W. L.; Hudson, M. R.; Mason, J. A.; Xiao, D. J.; Murray, L. J.; Flacau, R.; Brown, C. M.; Long, J. R., Angew. Chem. Accepted.
- Adsorption of Two Gas Molecules at a Single Metal Site in a Metal-Organic Framework. Runčevski, T.; Kapelewski, M. T.; Torres-Gavosto, R. M.; Tarver, J. D.; Brown, C. M.; Long, J. R., submitted.
- Nanointerface-driven Reversible Hydrogen Storage in the Nanoconfined Li-N-H System, B.C. Wood, V. Stavila, N. Poonyayant, T. W. Heo, K. G. Ray, L. E. Klebanoff, T. J. Udovic, J.R. I. Lee, N. Angboonpong, P. Pakawatpanurut⁷ submitted.

Key: NREL, NIST, LBNL, SNL

- Samples activated by slowly heating in tube furnace under dynamic vacuum (~10⁻⁷ torr)
- Samples transferred to He-filled dry box with < 0.1 ppm H₂O and < 5 ppm O₂ and sealed to copper blocks using an indium o-ring
- Stainless steel tubing connected to copper blocks permits delivery of D₂/H₂ to sealed sample
- Samples mounted onto bottom-loading closed cycle refrigerator and connected to gas delivery manifold of known volume
- Residual He removed using turbo molecular pump

Technical Slides: Neutron Powder Diffraction

- High resolution neutron powder diffraction data collected at 7 K using a Ge(311) monochromator with an in-pile 60' collimator
 - Instrument: BT1
 - \circ Corresponds to λ = 2.078 Å
- Initial measurements collected on evacuated bare sample
- Volumetric dosing of D₂ performed above 20 K with incrementally increasing amounts
 - Full adsorption ensured by letting pressure fall to zero
- Sample + adsorbed D₂ cooled to 7 K for measurement

Technical Slides: Inelastic Neutron Spectroscopy

- Inelastic neutron spectra collected using the Filter Analyzer Neutron Spectrometer (FANS)
- Residual He removed using turbo molecular pump
- Spectra collected at 7 K using a pyrolytic graphite (002) monochromator with 20'-20' collimation
 - Corresponds to energy range of 4.1 49.6 meV, resolution of 1.1 meV
- Volumetric dosing of H₂ performed above 20 K with incrementally increasing amounts
 - Full adsorption ensured by letting pressure fall to zero
- Sample + adsorbed H₂ cooled to 7 K for measurement