

2016 DOE Hydrogen Program and Vehicle Technologies Program

AMR

CSULA Hydrogen Refueling **Facility Performance** Evaluation and **Optimization**

Project ID: tv024_blekhman

Dr. David Blekhman
California State
University, Los Angeles
prepared April, 2016

Overview

Timeline

Barriers

- 10/01/2012 Start:
- 12/31/2016 End:

75% complete

Budget

- **Expenditure of Government** Funds
 - FY13-14 \$165,000
 - FY15-16 ~\$93,000
- Total project funding
 - DOE \$400,000
 - Contractor \$400,000

Partners

- California State University, Los Angeles—Project lead
- Hydrogenics Corp.
- Crystallogy, Consulting

Hydrogen Production and Delivery

- Reduce the cost of compression, storage, and dispensing at refueling stations
- Research and develop low-cost, highly efficient hydrogen production technologies

Technology Validation

Validate complete systems of integrated hydrogen and fuel cell technologies for transportation, infrastructure and electricity generation applications under real-world operating conditions.

Education

 Educate key audiences to facilitate nearterm demonstration, commercialization, and long-term market acceptance.

Project Objectives

- The project objective is to test, collect data, and validate hydrogen refueling architecture deployed at CSULA and its individual components in a real-world operating environment. The performance evaluations data will be provided to the National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL.
- Academic objectives
 - Contribute to the development of new industry standards
 - Develop and implement fueling station system performance optimization
 - Conduct outreach and training activities promoting the project and hydrogen and fuel cell technologies
 - Provide a living-lab environment for engineering and technology students pursuing interests in hydrogen and fuel cell technologies

Tasks: Phase 1

- Task 1. Develop data acquisition (DAQ) for station performance with existing capability
- Task 2. Design and implement enhanced data acquisition (DAQ) for station performance evaluation
- Task 3. Enable hydrogen purity testing and reporting

COMPLETED

Tasks: Phases 2 and 3

Task 4. Regular data collection and reporting after completing Task 2

Task 5. Conduct outreach and training activities for public and government and engage students in station related activities.

COMPLETED

Task 6. Data reporting update and station performance optimization after completing Task 4

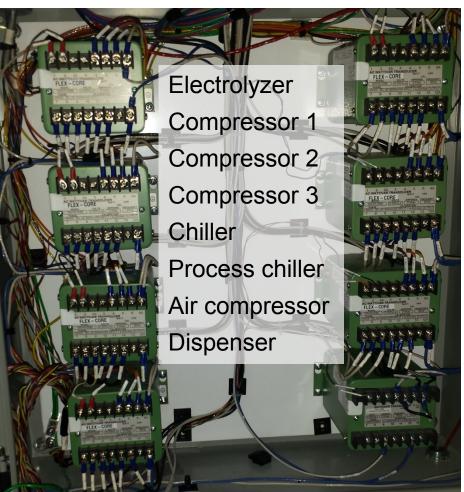
Task 7. Evaluate station utilization and assess the need for station upgrades and enhanced performance

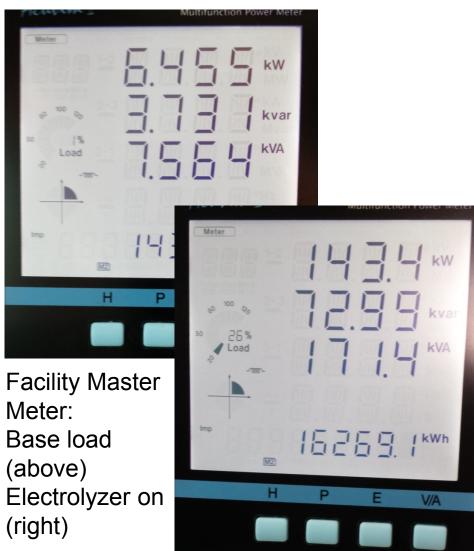
CSULA Hydrogen Station

Production: 60 kg/day, Hydrogenics Electrolyzer

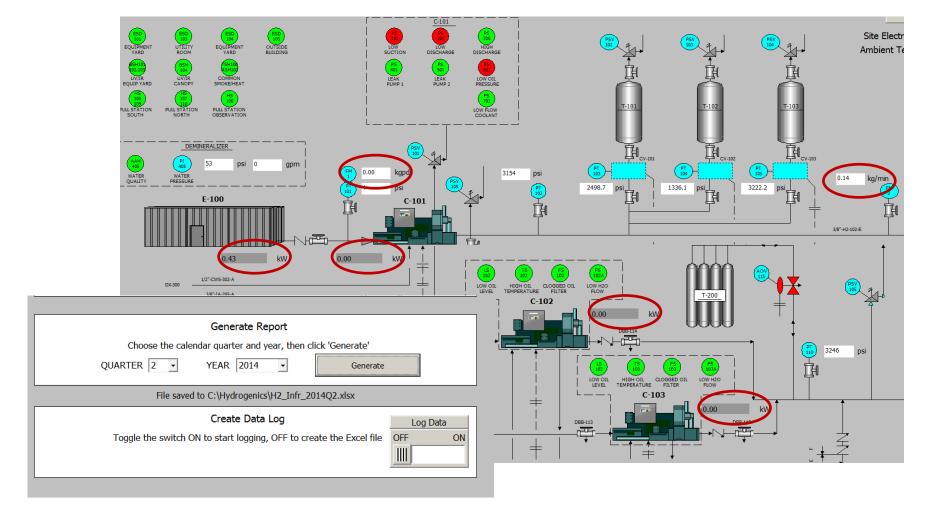
Storage: 60 kg, high pressure buffer ~10kg

Pressure: 5,000 and 10,000 psi


Capacity: 15-20 fuel cell vehicles per day



Approach/Strategy: Facility **Power Meters**



Facility Power Meters Junction Box

*Accomplishments: Readings in the Interface

State

Accomplishments: Reports Regularly Submitted

Dispensing Fuel Log

4	Α	В	С	D	Е	F
4	Calendar Quarter (ex. 2011Q2)		2015Q4			,
5	Site Name		CSULA			
6	Precooling Description		Chiller			
7	Manufacturer/ Model		Quantum/70MPa	9		
8	Precooling Temperature		-20			
9						
10	Data should be from reporting	quarter				-
11	Monthly Data Table			Month		
12	Category	Units	Month1	Month2	Month3	
13	category		Bar Dispensing	WOTHER	WOTETS	
14	Hydrogen Dispensed at 250 or 350 bar	kg	0.00	113.36	69.81	
15	250 or 350 bar Energy Cost	dollars	\$ -	\$ 9.35	\$ 10.62	
16	Total Energy Consumed in Dispensing 350 bar	MJ	0.00	305.93	347.65	
17	Dispenser Electronics	MJ	0.00	191.89	136.90	
18	350 Precool Energy Consumed	MJ	0.00	114.04	210.75	
19	Specific Energy Consumed	MJ/(kg H2 processed)	#DIV/0!	2.70	4.98	
20		700 Bar	Dispensing			
21	Hydrogen Dispensed at 700 bar	kg	120.25	107.63	129.18	
22	700 bar Energy Cost	dollars	\$ 11.73	\$ 11.43	\$ 11.92	
23	Total Energy Consumed in Dispensing 700 bar	MJ	383.78	374.07	390.24	
24	Energy Consumed in Precooling 350 and 700 bar	MJ	254.87	222.30	600.76	
25	Dispenser Electronics	MJ	383.78	182.18	253.34	
26	700 Precool Energy Consumed	MJ	254.87	108.27	390.01	

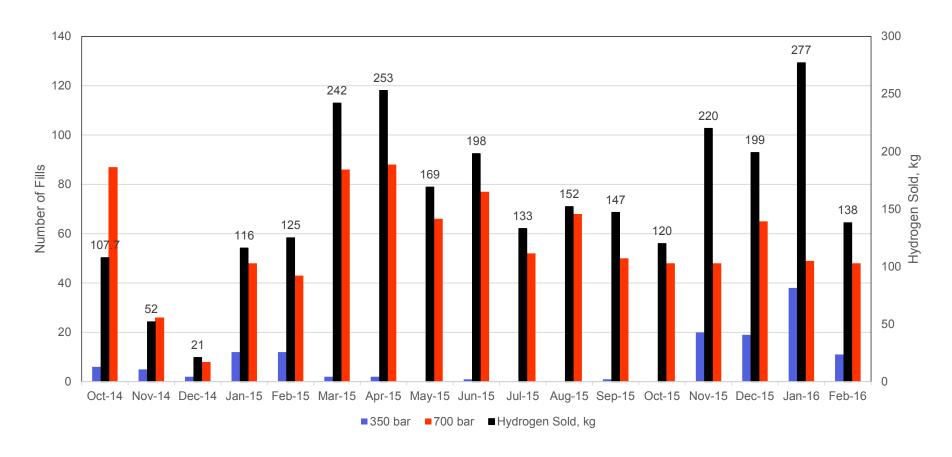
Compression 2 700 | Compression 3 700

Compression 1 350

NREL required report submissions: 2014 Q3, Q4 2015 Q1, Q2, Q3, Q4

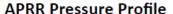
Hydrogen purity tests regularly performed and submitted. Typical: 99.99868%

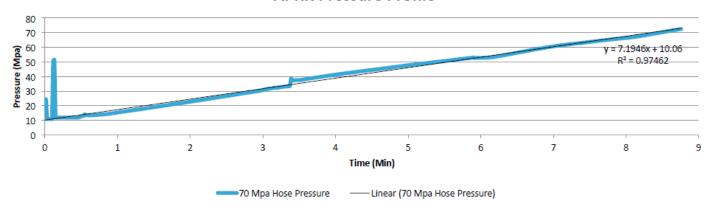
Accomplishments: Added Hydrogen Storage Data


A	A	В	С	D	E	F	G	Н	1	J	K	L	
3								Keep track of amount	t of hydrogen in storag	je and deliveries if appli	icable.		
4	Calendar Quarter (ex. 2011Q2	2)	2015Q4					Should have storage	amounts at least at be	ginning and end of qu	arter.		
5	Site Name		CSULA .										
6								Hydrogen delivered o	an be total for a month	n or single events.			
7	Data should be from reporting quarter							Record any hydrogen taken away as negative number (Example: Tube trailer leaves w l H.					
8				Tank Volume (m^3):	0.767	Tank Volume (m^3):	0.767	Tank Volume (m^3):	0.767	_	_		
9				H2 tanks1		H2 tanks2		H2 tanks3		Liquid tank			
	Date	Ambient	Hydrogen Cost	Nominal	storage	Nominal	storage	Nominal	storage	storage	Total Storage		
10	(record at least monthly)	Temperature (deg C)	(dollars)	Pressure (psi)	amount (kg)	Pressure (psi)	amount (kg)	Pressure (psi)	amount	amount (kg)	Amount		
11	10/1/15 11:59 PM	22.3437901	(uollais)	5781,462402	20.586	(psi) 5730,76709	(K <u>y)</u> 20.405	5681,98584	(kg) 20,232	(K <u>y</u>)	(kg) 61,223		
12	10/2/15 11:59 PM	21.6203995	<u> </u>	5785.365723	20.650	5607.864258	20.017	5737.129883	20.232		61.146		
13	10/3/15 11:59 PM	20.7161598	<u> </u>	5775.807617	20.680	5603.963379	20.065	5732.700195	20.525		61,270		
14	10/4/15 11:59 PM	17.8045006	<u> </u>	5697.590332	20.604	5527.891602	19,990	5662,47998	20.477		61.071		
15	10/5/15 11:59 PM	18.1390705	1	5808.579102	20.981	5543.495605	20.024	5631.446777	20.341		61.346		
16	10/6/15 11:59 PM	19.8752193	<u> </u>	5855.603027	21.026	5859.504395	21.040	5678.084473	20.388		62,454		
17	10/7/15 11:59 PM	21.4486008	 	5894.790039	21.053	5900.430664	21.073	5715.143555	20.412		62.539		
18	10/8/15 11:59 PM	24.4868393		5764.105957	20.376	5687.817871	20.107	5795.118164	20.486		60.969		
19	10/9/15 11:59 PM	27.8325291		5806.821777	20.299	5584.45752	19.522	5697.024414	19.915		59.736		
20	10/10/15 11:59 PM	27.9681702		5801.145508	20.270	5849,751465	20.440	5678.242676	19.841		60.551		
21	10/11/15 11:59 PM	27.4256306		5787.316406	20.258	5836.080078	20.429	5666.379395	19.835		60.522		
22	10/12/15 11:59 PM	29.4239998	<u> </u>	5847.785156	20.335	5602.030273	19,480	5775.614746	20.084		59.898		
23	10/13/15 11:59 PM	24.9841805	1	5750,433105	20.294	5518.138672	19,474	5693.688965	20.094		59.862		
24	10/14/15 11:59 PM	22.2624092	1	4597.473633	16.375	5758.057617	20.508	5436.214844	19.362		56.245		
25	10/15/15 7:25 PM	22.89538	†	5518.333496	19.612	5713.194824	20.305	5826.327148	20.707		60.625		
26	10/16/15 11:59 PM	21.2134895	1	5880.942871	21.021	5594.015625	19.995	5885.039063	21.035		62.051		
27	10/17/15 11:59 PM	21.7017803	1	5871.365723	20.952	5588.358887	19.942	5877.041992	20.972		61.865		
	3013011E 33 E0 BH	AA AAAF7AA	t							1	04.000		

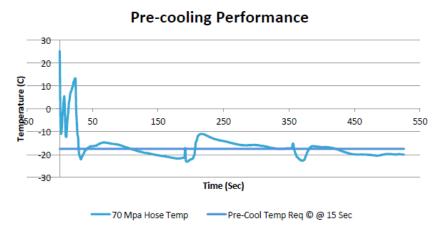
Per NREL request, daily storage data has been added to the NREL file. Data for three storage tanks is recorded.

Fueling Events



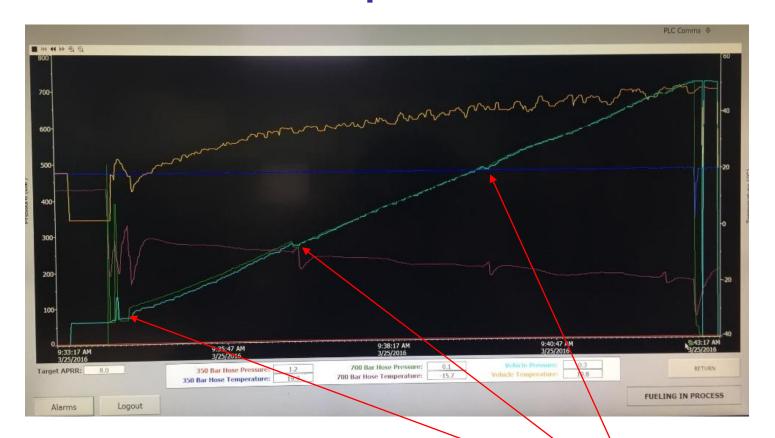

The chart demonstrates: Fueling events, maximum in January 2016 at 277kg 700 bar fills are dominant

Station Upgrades toward J2601 Compliance



Tamb=21.6 degC,

Station software was reprogrammed to follow J2601 2010 Class B pressure corridors. In this example, target APRR= 7.52Mpa/Min, actual APRR = 7.45Mpa/Min with start-up and leak check allowance. Performance is in compliance with J2601 2010 Class B.

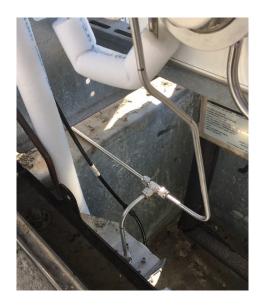

Total mass average temp with startup and leak check allowance is -17.7C on this fill, in compliance with J2601 2014 F70-T20 stations.

Figures and data analysis by Crystallogy

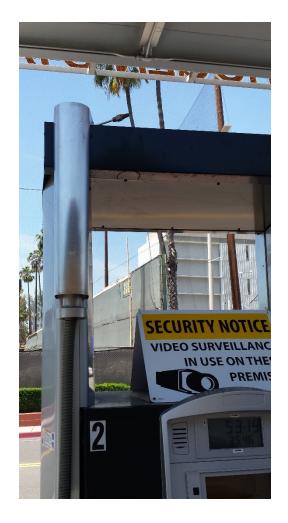
Real Time Performance Implemented

Each fueling event is logged and displayed real time

Safety leak tests are clearly identifiable, 2015 upgrade



Additional Upgrades



Electrolyzer in line hydrogen purity analyzer: moisture and oxygen content. Manual operation.

Flow control valve venting port rerouting for external venting. Prevents accumulation and alarm triggering.

Additional Upgrades

Steps to meet retail model:

- -Vending machine (left)
- -Point of Sale (right), works in both secured chip and strip

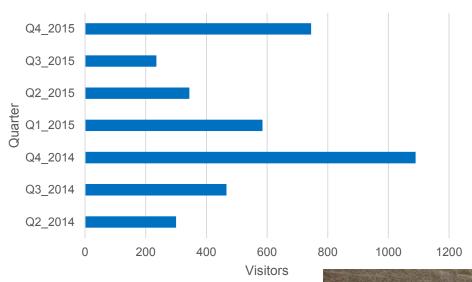
Collaborations:

Dispensing Meter Type 2016 Re-Approval

CSULA receives second seal of approval for sale of hydrogen on per kg basis as for 2016. Testing was conducted in collaboration with the California Department of Weights and Measures, CAFCP and CARB.

Testing equipment at CSULA Station Right, yellow sticker- seal of approval

Collaborations: HyStEP



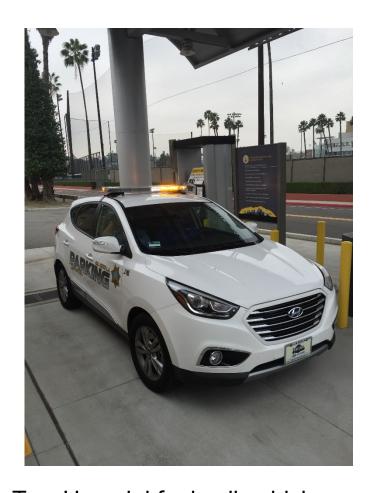
Hosted HyStEP (DOE-Sandia funded/built) device testing as it arrived to California. Hosted training workshop for Station Developer/Operator Group Mtg.Dec 2015

Outreach

85% Educational outreach

- ■50% High School
- ■10% Cal State LA
- ■5% Community Colleges
- ■5% K-8
- ■11% Combined
- ■5% Environmental Educators

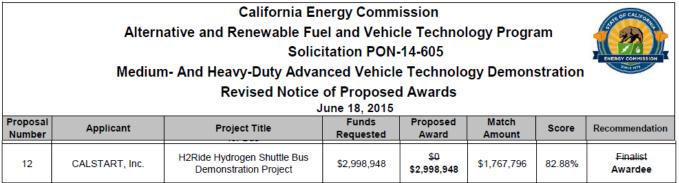
Students, government, industry, professional meetings, media.

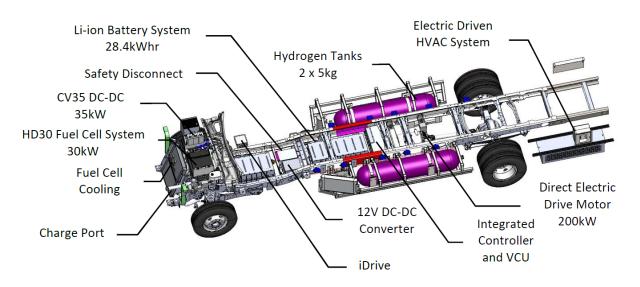

Number of visitors (right) to CSULA hydrogen station, total 3765

Future Work

Two Hyundai fuel cell vehicles are deployed as CSULA Campus Safety vehicles

Continue regular data collection and reporting of NREL data

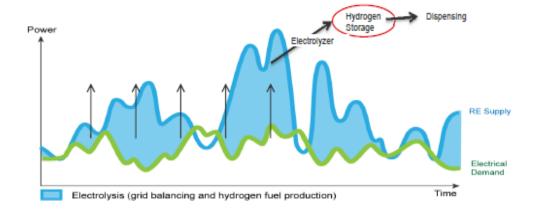

Conduct outreach and training activities for public and government and engage students in station related activities.


Continue hydrogen purity testing

Evaluate station utilization and assess the need for station upgrades and enhanced performance

Future Work and Collaborations: Fuel Cell Shuttle Bus Program

Partners: CALSTART, US Hybrid, Cal State LA (2 buses), SunLine (2 buses)



Other Future Projects: Research Opportunities

- Performance Optimization, Hydrogen Fleet and Infrastructure **Analysis**
 - Weekly patterns/storage
 - Availability via mobile app
 - Metering
- Smart Grid: Load Following with Renewable Power Generation
 - Off-peak load
 - Load shedding
- Workforce, Public and **Professional Education**

Intermittent wind exceeds load

Summary

- RELEVANCE. Program demonstrates high relevance to the DOE Hydrogen and Fuel Cell program especially in light of rapid development of hydrogen infrastructure in CA and thousands of FCV expected in 2016-2017.
- **APPROACH.** Reviewed NREL reporting requirements and identified instrumentation needed. Received NREL feedback. Developed pathways to improve station performance.
- **ACCOMPLISHMENTS.** Phases I and II are completed. Transitioned into Phase III. Data is continuously collected and analysis has been enabled. Reprogrammed station to meet safety standards: leak tests and aborts, pressure ramp rates and cooling temperatures to meet J2601, Class B. Point of Sale capability is introduced, sale by kg is approved. Students are trained in hydrogen station operation and secure related jobs.
- **COLLABORATIONS and OUTREACH.** Rapid development of collaborations: CA DMS, CAFCP, H2FIRST, HyStEP, Argonne, Lawrence Livermore Labs. Funded member of the Southern CA Alternative Fuel Center. Conducted robust outreach activities: 3765 visitors since July 2014, 85% students.
- **FUTURE WORK.** Short term: collecting data, analyzing station and individual equipment performance. Formed Calstart, US Hybrid, Cal State LA and SunLine partnership to have hydrogen shuttle buses (\$3M CEC award). Long term: smart grid, infrastructure and expanded education opportunities.

Publications and Presentations

- "Living Labs for Advanced Transportation and Renewable Energy at CSULA," D. Blekhman and M. Dray. CA Higher Education Sustainability Conference, San Francisco, CA, July 2015
- "An Emerging Culture: Hydrogen Fuel Cell Use in East Los Angeles," C. Ney, D. Blekhman, and M. Dray. CA Higher Education Sustainability Conference, San Francisco, CA, July 2015
- Awards: UC and CSU the Eleventh Annual Higher Education Energy Efficiency and Sustainability Best Practice Awards: Cal State LA, Hydrogen Research and Fueling Facility, 2015