Vehicle Technologies Office (VTO)

Office Overview

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Michael Berube Director, VTO Office of Energy Efficiency and Renewable Energy

Today

- What's New
- Office Vision and Strategy
- Goals and Successes

VTO Organizational Structure

Why Energy Efficient Mobility Systems (EEMS)?

How can disruption lead to new energy efficiency opportunities?

What are the most promising innovation levers?

Automation

Ride-sharing

Car-sharing

New Powertrains

What are the risks to energy use and how can we overcome them?

New Modes

VTO Mission

Growing our Economy Requires Transportation, and Transportation Requires Energy

Annually, transport...

VTO providing low cost, secure, efficient, and clean energy technologies to transport people and goods across America

FY 18 Program Focus and Strategy

Early Stage Research that Advances...

Fuel Diversification Domestic, Diverse, Alternative, Clean Fuels

Vehicle Efficiency Energy Efficient Vehicle Technologies

Mobility Systems Energy Efficient Transport Systems

FY 18 Budget Structure	FY 17 Enacted (\$K)	FY 18 Request (\$K)
Battery and Electrification Technologies	\$140,530	\$36,300
Energy Efficient Mobility Systems	\$16,385	\$12,200
Advanced Engine and Fuel Technologies	\$83,979	\$22,000
Materials Technologies	\$23,565	\$7,500
Outreach	\$37,400	\$2,000
Analysis	<u>\$5,100</u>	<u>\$2,000</u>
TOTAL	\$306,959	\$82,000

Ambitious Goals

All New Fuel Injector Visualization

Argonne

Fuel Injector Nozzle Geometry

World-class spatial resolution

High Precision has been Achieved in Nozzle Geometry Visualization

New Concept to Enable Lithium Metal Anodes

Reduced Graphene Oxide (GO) with Nanoscale Interlayer Gaps as Stable Host for Li Metal

Y. Cui group, *Nature Nanotechnology* (2016)

Cycling of Li–Reduced Graphene Oxide Electrodes

Analysis of Consumer Trips to Understand Charging Needs

Heat map of Columbus trip destination frequency derived from INRIX data set

Map of Electric Charging Stations from the Alternative Fuels Data Center

Ability to Derive Knock Computationally

Knock visualization in CFR

Energy Efficiency & Renewable Energy

Atomic Level Observation Reducing Magnesium Corrosion

C) BSE section of Mg-0.46Zr wt.%

B) Corresponding Zr EPMA X-ray map of Mg-0.46Zr wt.%

Fig. 1. Cross-section TOF-SIMS D map after 4 h in D_2O for A) Mg-0.46Zr. Both D and residual H segregated to Zr-rich coring regions. B) Corresponding Zr EPMA X-ray map (thermal scale) for Mg-0.46Zr, and C) Backscatter electron EPMA image of entire Mg-0.46 Zr sample cross-section.

New Math Based Models to Control Intersections

Decentralized control

90

Intersection Control

Baseline case

Decentralized optimal control

Vehicle Technologies in Use

www.fueleconomy.gov

the official U.S. government source for fuel economy information

U.S. Department of Energy

EEMS Living Labs

Keys for a Successful VTO

Thank You

