Fuel Cell System Modeling and Analysis

DOE Hydrogen and Fuel Cells Program 2017 Annual Merit Review and Evaluation Meeting

Washington, D.C.

June 5-9, 2017

Project ID: FC017

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
- Start date: Oct 2003
- End date: Open
- Percent complete: NA

Budget
- FY16 DOE Funding: $550 K
- Planned DOE FY17 Funding: $500 K
- Total DOE Project Value: $500 K

Barriers
- B. Cost
- C. Performance
- E. System Thermal and Water Management
- F. Air Management
- J. Startup and Shut-down Time, Energy/Transient Operation

Partners/Interactions
- Eaton, Ford, UDEL/Sonijector
- SA, Aalto University (Finland)
- 3M, Ballard, Johnson-Matthey Fuel Cells (JMFC), UTRC, FC-PAD, GM
- IEA Annex 34
- Transport Modeling Working Group
- Durability Working Group
- U.S. DRIVE fuel cell tech team

This project addresses system, stack and air management targets for efficiency, power density, specific power, transient response time, cold start-up time, start up and shut down energy.
Objectives and Relevance

Develop a validated system model and use it to assess design-point, part-load and dynamic performance of automotive (primary objective) and stationary (secondary objective) fuel cell systems (FCS)

- Support DOE in setting technical targets and directing component development
- Establish metrics for gauging progress of R&D projects
- Provide data and specifications to DOE projects on high-volume manufacturing cost estimation

Impact of FY2017 work

- Projected 44.9 $/kWₑ FCS cost at high volume manufacturing and 0.126 g/kWₑ Pt content with high performance (HP) d-PtNi/C cathode catalyst, reinforced 14-µm 850 EW membrane, and Q/ΔT = 1.45 kW/°C constraint
- Estimated 10% degradation in net FCS power with 40% decrease in d-PtNi/C cathode catalyst ECSA (0.05-0.15 mg/cm² Pt loading) due to cyclic potentials
- Showed the possibility of removing cathode humidifier if MEA membrane thickness is <14-µm thin, and stack inlet pressure is 2.5 atm or higher
- Demonstrated through a CFD model that H₂ recirculation blower can be eliminated by using a pulse ejector and maintaining <20% N₂ mole fraction to avoid fuel starvation
- Evaluated extreme conditions (cell voltage, manufacturing volume, Q/ΔT constraint) where high stack inlet pressures (4 atm) may offer advantages

Q: Stack heat load; ΔT: Stack coolant exit T – Ambient T
Approach

Develop, document & make available versatile system design and analysis tools
- GCtool: Stand-alone code on PC platform
- GCtool-Autonomie: Drive-cycle analysis of hybrid fuel cell systems

Validate the models against data obtained in laboratories and test facilities inside and outside Argonne
- Collaborate with external organizations

Apply models to issues of current interest
- Work with U.S. DRIVE Technical Teams
- Work with DOE contractors as requested by DOE

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evaluate the performance of MEAs with de-alloyed PtNi/C cathode catalyst relative to the targets of 0.44 A/mg-PGM mass activity at 900 mV_{ir-free}, 1000 mW/cm² at rated power, and 300 mA/cm² at 800 mV.</td>
<td>12/16</td>
</tr>
<tr>
<td>2</td>
<td>Determine the comparative performance of four state-of-the-art MEAs with Pt, Pt-alloy and dealloyed Pt-alloy catalysts and electrode structures.</td>
<td>03/17</td>
</tr>
<tr>
<td>3</td>
<td>Model, update and project the durability of SOA catalysts and MEAs relative to the 2020 operating life target of 5000 h.</td>
<td>06/17</td>
</tr>
<tr>
<td>4</td>
<td>Update the performance and cost of an automotive fuel cell system with an advanced low-PGM catalyst relative to 2020 targets of 65% peak efficiency, Q/ΔT of 1.45 kW/K, and $40/kW cost.</td>
<td>09/17</td>
</tr>
</tbody>
</table>
Technical Accomplishments: Summary

Stack: Collaboration with 3M, JMFC/UTRC, Ballard, FC-PAD and GM in obtaining data to develop validated models for pressures up to 3 atm

- Dispersed Pt/C and de-alloyed PtNi/C catalyst systems
- De-alloyed PtNi/C catalyst system: durability on drive cycles
- De-alloyed Pt$_3$Ni$_7$/NSTF catalyst system
- Dispersed PtCo/C alloy catalyst systems

Air Management: Investigating integrated air management system with two-stage, high speed centrifugal compressor and air-foil bearings (Honeywell patent)

Water Management: Optimized cost of integrated PEFC stack and cross-flow humidifier

- Investigated FCS performance without cathode humidifier (3M collaboration)

Fuel Management: Evaluating the performance of anode system with a pulse injector in lieu of H$_2$ recirculation blower (collaboration with Ford & UDEL)

Thermal Management: Optimizing system performance and cost subject to Q/ΔT constraint

ΔT: Stack coolant exit T – Ambient T
1.1 Differential Cell Data

Variables: P, T, RH, X_{O2}, i

2. Overpotential Breakdown

\eta_s^c, \eta_s^a, iR_m^m, iR_\Omega^c, \eta_m

3. \eta_m Correlation

i_L(P, T, RH, X_{O2}), \eta_m(P, T, RH, X_{O2}, i/i_L)

4. Expanded Polarization Data

5. Mass Transfer Resistance

R_m(P, T, RH, X_{O2}, E, i)

6. Resistance Breakdown

R_d: Pressure Dependent
R_{cf}: Pressure Independent

7. Integral Cell Model

1+1D or 2+1D

Variables: P, T, RH, X_{O2}, i

CCL Conductivity

\sigma_c(T, RH)

PtO_x Formation

\Theta(E)

Gas Resistance

R_g(P, T, RH, X_{O2})

GDL Resistance

\epsilon_T^d, \epsilon_T^w(E, i), \delta/\delta_d

Operating Conditions

Cell Design

FC-PAD

CCL Resistance

R_{cf}(T, RH, E, i)
Differential Cell Data

UTRC 12.25-cm² active area cell, triple serpentine flow channels, fixed flow rate 1(a) / 3(c) slpm, 5 minutes hold per point

- JMFC Catalyst: d-PtNi/C, 0.1 mg/cm² Pt loading, 60 m²/gPt ECSA (A_{Pt})
- BOL diagnostics: H₂-pump, H₂-xover, CV, EIS

<table>
<thead>
<tr>
<th>Test Series</th>
<th>Tests</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>X₀₂, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Effect of P</td>
<td>P, atm</td>
<td>1</td>
<td>1.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td>100, 21, 10, 6, 2, 1</td>
</tr>
<tr>
<td>2. Effect of T</td>
<td>T, °C</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>45</td>
<td>100, 21</td>
</tr>
<tr>
<td>3. Effect of RH</td>
<td>Φ, %</td>
<td>100</td>
<td>85</td>
<td>70</td>
<td>55</td>
<td>30</td>
<td>100, 21, 10</td>
</tr>
</tbody>
</table>

Electrode conductivity (σₖ) from Galvanostatic impedance data for H₂/N₂ at 0.4 to 0.925 V with 5 mV perturbation

- σₖ has similar temperature and RH dependence as σₘ: σₖ = σₘf(εᵢ, τ)

σₘ: Membrane conductivity; εᵢ: Ionomer volume fraction; τ: Tortuosity for ion conduction
d-PtNi/C has 2X modeled mass activity of a-Pt/C that has nearly the same particle size

- d-PtNi/C and PtCo/C alloy have comparable mass activities
- Both d-PtNi/C and PtCo/C alloy systems meet the mass activity targets of 440 A/gPt
Mass Transfer Overpotentials

Determined limiting current density \(i_L \) and correlated mass transfer overpotential \(\eta_m \) with reduced current density \(i/i_L \)

- Mass transfer overpotentials derived from pol curves do not correlate with mass activity
 \[
 \eta_m = E_N - E - i R^m_\Omega - \eta_c - \eta_a
 \]
- \(i_L \) defined as current density at which \(\eta_m = 450 \text{ mV} \)
- Limiting current densities are higher and mass transfer overpotentials are lower in NSTF MEAs than in dispersed catalyst MEAs with nearly same Pt loading
Model Calibration: Stack with d-PtNi/C Cathode Catalyst

High performance (HP) stack with d-PtNi/C cathode catalyst, 10°C rise in coolant T (ΔT_c)
- 0.025(a)/0.1(c) mg/cm² Pt loading
- 850 EW, 14-µm (dry) chemically-stabilized, reinforced membrane, ~42 mΩ.cm² HFR(1)
- 20% higher i_L reflecting better high surface-area carbon support (FC144)
- 47 mΩ.cm² electrode sheet resistance (δ_c/σ_c) at 100% RH

Sources of Cell-to-Stack Derating in Power Density at Q/ΔT Relevant Conditions

2.5-atm Stack Inlet P, 95°C Stack T(2)
- Operating pressure, 2.5 atm inlet (i) vs. 2.5 atm outlet (o): 4.4%
- Air stoichiometry (SR(c)), 1.5 vs. 2.0: 7.3%
- Total derating: 11.3%

1.5 Stack Inlet P, 95°C Stack T(2)
- Operating pressure, 1.5 atm inlet vs. 1.5 atm outlet: 8.7%
- Air stoichiometry, 2.5 vs. 1.5: 6.9%
- RH$_{in}$, 51% vs. 70%: 2.3%

(1) High-frequency resistance for 2.5-atm conditions; (2) Bipolar plate temperature at coolant exit
Projected Performance of Automotive FCS: HP d-PtNi/C Cathode Catalyst

Modeled optimal beginning of life (BOL) performance of automotive FCS subject to $Q/\Delta T=1.45$ kW/°C constraint: 0.125 mg/cm² total Pt loading; 850 EW, 14-μm chemically-stabilized, reinforced membrane

- Projected FCS cost and Pt content: 44.9 $/kW_e at 2.5 atm, and 0.126 g_{Pt}/kW_e at 2.5-atm stack inlet pressure, 95°C stack temperature
- Determined Optimum exit RH: ~100% at 2.5 atm and <60% at 1.5 atm

<table>
<thead>
<tr>
<th>P</th>
<th>CEM Power</th>
<th>Current Density</th>
<th>Cell Voltage</th>
<th>Power Density</th>
<th>Stack Pt Content</th>
<th>Pt Cost</th>
<th>Stack Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm</td>
<td>kW_e</td>
<td>A/cm²</td>
<td>mV</td>
<td>mW/cm²</td>
<td>g_{Pt}/kW_e</td>
<td>$/kW_e</td>
<td>$/kW_e</td>
</tr>
<tr>
<td>3.0</td>
<td>8.8</td>
<td>1.735</td>
<td>670</td>
<td>1162</td>
<td>0.108</td>
<td>5.8</td>
<td>18.6</td>
</tr>
<tr>
<td>2.5</td>
<td>7.0</td>
<td>1.651</td>
<td>663</td>
<td>1095</td>
<td>0.114</td>
<td>6.1</td>
<td>19.2</td>
</tr>
<tr>
<td>2.0</td>
<td>5.5</td>
<td>1.457</td>
<td>657</td>
<td>956</td>
<td>0.131</td>
<td>6.8</td>
<td>21.1</td>
</tr>
<tr>
<td>1.5</td>
<td>4.1</td>
<td>1.231</td>
<td>651</td>
<td>801</td>
<td>0.156</td>
<td>8.0</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Cost correlations from Strategic Analysis (SA), 500,000 units/year, no H₂ blower
Optimum Pt Loading in HP d-PtNi/C Cathode Electrode*

Similar total overpotentials but current density is lower at lower Pt loadings in cathode ($L_{Pt(c)}$), 663-mV cell voltage

~33% lower power density at 0.05 mg/cm2 Pt loading in cathode

Similar total overpotentials at 1.5 atm as at 2.5 atm but at much lower current densities, 651-mV cell voltage

Small differences in FCS cost may favor >0.10 mg/cm2 Pt loading in cathode

*Conditions as in slide 10, $Q/\Delta T=1.45$ kW/°C, 95°C stack T, $\Delta T_c = 10$°C
Stability of d-PtNi/C Electrode under Cyclic Potentials

Collaboration with FC-106: Catalyst AST, 30,000 cycles

- Measured ECSA loss higher on trapezoid cycles (0.6-0.95 V, 700 mV/s) than on triangle cycles (0.6-925 V, 50 mV/s)
- Faster ECSA loss with extensive intra-cycle diagnostics
- WAXS indicates extensive leaching of Ni that depends on duty cycle

<10% decrease in specific activity even with >90% Ni loss from alloy catalyst

Linear correlation between mass activity and ECSA

Correlation between limiting current density and Pt surface roughness (S_{Pt})

1) WAXS data from N. Kariuki and D. Myers (ANL)
To meet the target of 10% derating in net FCS power over lifetime, the acceptable ECSA loss (ΔA_{Pt}) is limited to <40% for $L_{Pt(c)}=0.1$ mg/cm2

- Small dependence of acceptable ECSA loss on Pt loading (L_{Pt}) although Pt loading may affect ECSA loss over cyclic potentials and startup/shutdown

- Regardless of Pt loading, increase in kinetic and mass transfer overpotentials contribute equally to voltage loss

- Additional degradation mechanisms involving other components (membrane, catalyst support) and fuel/air impurities to be included in future work

Data Table

<table>
<thead>
<tr>
<th>ΔA_{Pt}, %</th>
<th>$L_{Pt(c)}$, mg/cm2</th>
<th>FCS Net Power, kW$_e$</th>
<th>η_{f}, mV</th>
<th>η_{c}, mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.15</td>
<td>80.0</td>
<td>40.9</td>
<td>384</td>
</tr>
<tr>
<td>25</td>
<td>0.10</td>
<td>75.7</td>
<td>67.4</td>
<td>400</td>
</tr>
<tr>
<td>50</td>
<td>0.10</td>
<td>71.5</td>
<td>76.3</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>80.0</td>
<td>97.7</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>75.4</td>
<td>79.7</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>75.5</td>
<td>102.5</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>75.5</td>
<td>72.8</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>66.7</td>
<td>39.3</td>
<td>459</td>
</tr>
</tbody>
</table>

P: 2.5 atm
T: 95$^\circ$C
Collaborated with 3M (FC104) to design and conduct tests analyzing the effects of anode and cathode RH on performance of 5-cm² active-area differential cells

- Anode: Ternary Pt₆₈(CoMn)₃₂, 0.019 mgPt/cm²
- Cathode: Binary Pt₃Ni₇/NSTF, 0.096 mgPt/cm², with 3M Type “B” cathode interlayer, 0.016 mgPt/cm²
- Membrane: 3M-S (reinforced) 725 EW PFSA with additive, 14 µm
- Diffusion Media: 3M “X3” cathode GDL (experimental backing, MPL), 3M 2979 cathode GDL

Developed models for effect of anode RH on HFR, ORR kinetics, limiting current and mass transfer overpotential

Lower HFR under wet conditions

Lower limiting current density under wet conditions

Higher mass transfer losses under wet conditions

All results for H₂/Air, P = 1.5 atm, T = 80°C
Water Transport in FCS w/o Cathode Humidifier

Self humidification of cathode by internal water transport from anode to cathode (and vice versa) across thin (14 μm) membrane

- Complete water balance at steady state: zero net transport
- Exit cathode RH is only a function of cell temperature and cathode SR
- Exit anode RH depends on cell temperature and anode SR

- Coolant flow concurrent with cathode flow
- Cathode inlet and outlet RHs do not depend on anode flow but cathode RH distribution depends on whether anode flow is co-flow or counter-flow

<table>
<thead>
<tr>
<th>P</th>
<th>1.5 atm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔT_c</td>
<td>10°C</td>
</tr>
<tr>
<td>SR(c)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>RH(c)</th>
<th>RH(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75°C</td>
<td>22%</td>
<td>92%</td>
</tr>
<tr>
<td>80°C</td>
<td>18%</td>
<td>75%</td>
</tr>
<tr>
<td>85°C</td>
<td>14%</td>
<td>61%</td>
</tr>
<tr>
<td>90°C</td>
<td>12%</td>
<td>51%</td>
</tr>
</tbody>
</table>

- Parallel Flow
- Counter Flow

T: Coolant outlet temperature
Performance of FCS w/o Cathode Humidifier

All results for fixed 0.675 cell V, ΔT=10°C, SR(c)=1.5

Effect of cathode humidifier on stack power density
- Small improvement at low cell temperature
- Larger improvement at low operating pressure
- Larger improvement for parallel flow

Conclusions
- Cathode humidifier needed at 1.5 atm and >90°C, especially with parallel flow
- Small penalty in removing humidifier at 2.5 atm, especially with counter flow

Power density decreases if SR(a) < 2, but parasitic power too high if SR(a) > 2
Comparing fixed/variable area twin ejectors, hybrid ejector-recirculation pump, and pulse ejector

- CFD model of H₂ ejector with converging-diverging nozzle, undergoing testing and validation
- Process model of supersonic ejector with normal and oblique shocks, calibrated with laboratory data
- CFD model of pulse ejectors

Hybrid system with variable-area nozzle ejector (but not two-parallel ejectors) can meet flow and H₂ stoichiometry targets

Cost of recirculation blower: ~3.25 $/kWe

Modeled operating map of a fixed-area ejector with constant motive gas pressure (10.7 atm) and H₂ flow rate (1.38 g/s). Variable suction/delivery pressure

Entrainment: Ratio of suction to motive gas mass flow rate

Performance of Pulse Ejectors

Pulses of stack inlet/outlet pressure generated by opening (10 ms) and closing (90 ms) of H₂ injector

Depending on pulse width/frequency, there is threshold N₂ content for H₂ starvation at low current densities

Periodic variation of H₂ mole fraction, 0.1 A/cm² current density; H₂ on for 5 ms, off for 45 ms

Peak gas velocity depends on pulse width and controls the ability to remove liquid water and prevent its accumulation

Conclusion: May be feasible to replace hybrid ejector-recirculation pump with a pulse ejector, with limits on allowable N₂ build-up and pulse width
Air Management System

Study Objective: Evaluate possible advantage of air management system capable of delivering air at high pressures, up to 4 atm

2-Stage Centrifugal Compressor
- Mixed axial and flow compressors on a common shaft with air foil bearings (AFB); Honeywell US Patent 2015/0308456
- 3-phase brushless DC motor, liquid and air cooled; liquid-cooled motor controller
- Compressor power >20 kWₑ needed even if AFB/motor cooling air is recovered

FCS Performance at 4-atm Stack Inlet P
- 5.3% increase in MEA power density if Q/ΔT constraint is imposed, SR(c)=1.5, 0.718 V required cell voltage
- 25% increase in MEA power density at the 2.5-atm operating cell voltage, 0.672 V
- At low manufacturing volume, 1000 units/year, the cost of 4-atm FCS is only 3.8% higher at same cell voltage, 0.672 V

Cost correlations from SA, 1,000 units/year, Ejector + H₂ blower
<table>
<thead>
<tr>
<th>Collaborations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Management</td>
</tr>
</tbody>
</table>
| **Stack** | 3M: High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation (FC104)
Ballard/Eaton: Roots Air Management System with Integrated Expander (FC103)
JMFC and UTRC: Rationally Designed Catalyst Layers for PEMFC Performance Optimization (FC106) |
| **Water Management** | Gore, Ford, dPoint: Materials and Modules for Low-Cost, High-Performance Fuel Cell Humidifiers (FC067) |
| **Thermal Management** | 3M, Honeywell Thermal Systems |
| **Fuel Management** | 3M, University of Delaware (Sonijector) |
| **Fuel Economy** | ANL-Autonomie (SA044), Aalto University (Fuel Cell Buses) |
| **H₂ Impurities** | 3M |
| **System Cost** | SA: Manufacturing Cost Analysis of Fuel Cell Systems and Transportation Fuel Cell System Cost Assessment (FC163) |
| **Dissemination** | IEA Annex 34, Transport Modeling Working Group, Durability Working Group, Catalyst Working Group |

- Argonne develops the fuel cell system configuration, determines performance, identifies and sizes components, and provides this information to SA for high-volume manufacturing cost estimation
Proposed Future Work

1. Support DOE development effort at system, component, and phenomenological levels

2. Support SA in high-volume manufacturing cost projections, collaborate in life-cycle cost studies
 - Optimize system parameters considering costs at low-volume manufacturing
 - Life cycle cost study for fuel cell electric buses (work with Ballard, Eaton, SA)

3. Alternate MEAs with advanced alloy catalysts
 - State-of-the-art low PGM Pt and Pt alloys (FC-PAD collaboration)
 - De-alloyed PtNi on high surface-area carbon support (ANL catalyst project with JMFC and UTRC as partners), calibrate/validate model on larger area cells
 - Alternate electrode structures (FC-PAD FOA projects collaboration)

4. System architecture and balance-of-plant components
 - Air management system with centrifugal and Roots compressors and expanders (Honeywell/Eaton collaboration)
 - Fuel and water management systems: anode gas recirculation, internal/external humidification
 - Bipolar plates and flow fields for low pressure drops and uniform air/fuel distribution, cell to stack performance differentials

5. Incorporate durability considerations in system analysis
 - System optimization for cost, performance, and durability on drive cycles (Advanced alloy catalyst systems)
Project Summary

<table>
<thead>
<tr>
<th>Relevance:</th>
<th>Independent analysis to assess design-point, part-load and dynamic performance of automotive and stationary FCS</th>
</tr>
</thead>
</table>
| **Approach:** | Develop and validate versatile system design and analysis tools
 Apply models to issues of current interest
 Collaborate with other organizations to obtain data and apply models |
| **Progress:** | Projected 44.9 $/kW_e FCS cost and 0.126 g/kW_e Pt content with HP d-PtNi/C cathode catalyst, reinforced 14-μm 850 EW membrane, and Q/ΔT = 1.45 kW/°C constraint
 Estimated 11% degradation in net FCS power with 40% decrease in d-PtNi/C cathode catalyst ECSA (0.05-0.15 mg/cm² Pt loading) due to cyclic potentials
 Showed the possibility of removing cathode humidifier for MEA membrane thickness <14-μm thin, and stack inlet P >2.5 atm
 Demonstrated that H₂ recirculation blower can be eliminated with a pulse ejector and maintaining <20% N₂ mole fraction
 Evaluated favorable extreme conditions (cell voltage, volume of manufacturing, Q/ΔT constraint) for high stack inlet P (4 atm) |
| **Collaborations:** | 3M, Aalto University, Eaton, JMFC, SA, UTRC, UDEL/Sonjector |
| **Future Work:** | Fuel cell systems with emerging high activity catalysts
 Alternate balance-of-plant components
 System analysis with durability considerations on drive cycles |
Key recommendations and feedback

- Investigate dispersed systems, including PtCo catalysts
- Show parasitic losses for the air machine vs. inlet air pressure
- De-emphasize work on 3M nanostructured thin-film catalyst
- Closer cooperation with FC-PAD activities and projects
- Clarify interactions with SA, collaboration or source of cost correlations
- This is a good solid model and a good team

Work scope consistent with above recommendations

✓ Focused work on d-PtNi/C dispersed catalysts using differential cell data obtained in collaboration with JMFC and UTRC (FC-106)

✓ On-going work on differential cell data for PtCo/C dispersed catalysts in collaboration with FC-PAD and an industrial partner. Initial results on performance and durability are included in FC-PAD presentations. The PI is FC-PAD coordinator for modeling and validation thrust area.

✓ Maintained and expanded collaborations with material and component developers and other projects

✓ Investigating non-NSTF advanced catalysts, with emphasis on low PGM alloys

✓ All system analysis work is based on 1D+1D or 2D+1D down-the-channel stack model, co- or counter-flowing anode and cathode streams, anode recycle, etc.

✓ On-going parallel work on bipolar plates, flow fields, fuel system, alternate system architecture

✓ ANL is a subcontractor to SA on FC-018 project, responsible for supplying performance and design data. Plans and recent results are discussed in bi-weekly calls.
Technical Back-Up Slides
Publications and Presentations

Journal Publications

Conference Presentations

Meetings Organized
FCS with HP d-PtNi/C Cathode Catalyst: Critical Assumptions

PEFC Stack

- Membrane: 14-µm, 850 EW, PFSA Mechanically reinforced, with chemical additive
- Cathode Electrode: JMFC d-PtNi/C catalyst, 0.1 mgPt/cm², high surface-area carbon support, 850 EW ionomer, I/C=1.0
- Anode Electrode: Pt/C catalyst, 0.025 mgPt/cm², high surface-area carbon support
- Cathode/Anode GDL: Non-woven carbon paper with microporous layer (MPL), SGL 25BC, 235 µm nominal uncompressed thickness
- Seals/Frames: PET subgasket (3M patent)
- Bipolar Plates: 3-mil (0.075 mm) 316 SS substrate with Treadstone coating, 0.5 mm land, 0.7 mm channel, 0.4 mm depth. 62.5% active area, 15 mΩ.cm² 2X ICR*

Fuel Management System

- Hybrid ejector-recirculation pump
- 35% pump efficiency, 1% H₂ purge
- 3 psi pressure drop at rated power

*2X ICR: two-sided interfacial contact resistance

Air Management System

- Integrated centrifugal compressor-expander-motor module (Honeywell), air foil bearings (AFB)
- Mixed axial flow compressor
- Inflow radial expander, variable area nozzle
- 3-phase brushless DC motor, liquid and air cooled; liquid-cooled motor controller
- Efficiencies at rated power: 71% compressor, 73% expander, 89.5% motor, 89.5% controller
- Turn-down: 20
- 5 psi ΔP between compressor discharge and expander inlet at rated power

Heat Rejection System

- Two circuits: 75-95°C HT, 10°C ΔT
- 65°C LT coolant, 5°C ΔT
- 55% pump + 92% motor efficiency
- 45% blower + 92% motor efficiency
- 10 psi ΔP in stack and 5 psi in radiator

Water Management System

- Planar cross-flow humidifier with Gore’s M311.05 membrane
Rated Power Performance of FCS with Alloy catalysts

<table>
<thead>
<tr>
<th>Stack Parameters</th>
<th>2017 FCS with d-PtNi/C Catalyst</th>
<th>2016 FCS with Binary NSTF Catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>Ionomer: 850 EW PFSA with chemical additive Substrate: Mechanical reinforcement Thickness: 14 μm</td>
<td>Ionomer: 3M 725 EW PFSA with chemical additive Substrate: 3M support Thickness: 14 μm</td>
</tr>
<tr>
<td>Cathode Catalyst</td>
<td>Electrode: d-PtNi₆ (0.1 mg/cm²), add washed Ink: organic, EW=850, V/C=1.0</td>
<td>d-Pt₃Ni₂ (0.095 mg/cm²) with Pt/C cathode interlayer (0.016 mg/cm²)</td>
</tr>
<tr>
<td>Anode Catalyst</td>
<td>Pt/C (0.025 mg/cm²)</td>
<td>Pt₈S(CoMn)₃₂/NSTF (0.019 mg/cm²)</td>
</tr>
<tr>
<td>Stack Gross Power</td>
<td>88.1 kW</td>
<td>88.2 kW</td>
</tr>
<tr>
<td>Stack Voltage (Rated)</td>
<td>250 V</td>
<td>300 V</td>
</tr>
<tr>
<td>Number of Active Cells</td>
<td>377 cells (also 376 cooling cells)</td>
<td>453 cells (also 452 cooling cells)</td>
</tr>
<tr>
<td>Stack Gross Power Density</td>
<td>2.84 kW/L</td>
<td>2.49 kW/L</td>
</tr>
<tr>
<td>Stack Gross Specific Power</td>
<td>3.45 kW/kg</td>
<td>2.99 kW/kg</td>
</tr>
<tr>
<td>Stack Inlet Pressure</td>
<td>2.5 bar</td>
<td>2.5 bar</td>
</tr>
<tr>
<td>Stack Coolant Temperature</td>
<td>84°C (inlet), 94°C (outlet)</td>
<td>83.9°C (inlet), 93.9°C (outlet)</td>
</tr>
<tr>
<td>Stack Air Inlet/Outlet RH</td>
<td>Inlet: 75% RH at 84°C; Outlet: 100% RH at 94°C</td>
<td>Inlet: 50% RH at 85°C; Outlet: 88% RH at 95°C</td>
</tr>
<tr>
<td>Stack Fuel Inlet/Outlet RH</td>
<td>Inlet: 42% RH at 94°C; Outlet: 100% RH at 84°C</td>
<td>Inlet: 43% RH at 95°C; Outlet: 105.7% RH at 85°C</td>
</tr>
<tr>
<td>Cathode/Anode Stoichiometry</td>
<td>1.5 (cathode) / 2.0 (anode)</td>
<td>1.5 (cathode) / 2.0 (anode)</td>
</tr>
<tr>
<td>Cell Area</td>
<td>213 cm² (active), 346 cm² (total)</td>
<td>208 cm² (active), 333 cm² (total)</td>
</tr>
<tr>
<td>Cell Voltage</td>
<td>663 mV</td>
<td>663 mV</td>
</tr>
<tr>
<td>Current Density</td>
<td>1.651 A/cm²</td>
<td>1.418 A/cm²</td>
</tr>
<tr>
<td>Crossover Current Density</td>
<td>4.2 mA/cm² @ 80°C, 100% RH, 1 atm P₆2</td>
<td>5.0 mA/cm²</td>
</tr>
<tr>
<td>Power Density</td>
<td>1095 mW/cm²</td>
<td>941 mW/cm²</td>
</tr>
<tr>
<td>Balance of Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidifier Membrane Area</td>
<td>0.8 m²</td>
<td>0.53 m²</td>
</tr>
<tr>
<td>Air Pre-cooler Heat Duty</td>
<td>6.3 kW</td>
<td>5.7 kW</td>
</tr>
<tr>
<td>CEM Motor and Motor Controller Heat Duty</td>
<td>3.0 kW</td>
<td>3.0 kW</td>
</tr>
<tr>
<td>Main Radiator Heat Duty</td>
<td>78.9 kW</td>
<td>79.8 kW</td>
</tr>
<tr>
<td>CEM Power</td>
<td>Compressor shaft power: 10.3 kW</td>
<td>Compressor shaft power: 10.4 kW</td>
</tr>
<tr>
<td></td>
<td>Expander shaft power out: 4.7 kW</td>
<td>Expander shaft power out: 4.7 kW</td>
</tr>
<tr>
<td></td>
<td>Net motor and motor controller: 7.0 kW &</td>
<td>Net motor and motor controller: 7.1 kW &</td>
</tr>
<tr>
<td>Fan and Pump Parasitic Power</td>
<td>0.5 kWₑ (coolant pump), 0.3 kWₑ (H₂ recirculation pump), 0.345 kWₑ (radiator fan)</td>
<td>0.5 kWₑ (coolant pump), 0.3 kWₑ (H₂ recirculation pump), 0.345 kWₑ (radiator fan)</td>
</tr>
</tbody>
</table>
Distributed ORR kinetic model

- For Tafel kinetics, the ORR and CCL Ohmic overpotentials are separable

\[\eta_c = \eta_s^c + iR_\Omega \left(\frac{i\delta_c}{b\sigma_c} \right) \]

\[i = i_0 (1 - \theta) e^{-\frac{\omega \theta}{RT}} e^{\frac{\alpha nF}{RT} \eta_s^c} \]

- An optimization algorithm required to determine \(i_0 \) and \(\omega \)

\[i_0 = i_{0r} e^{-\frac{\Delta H_S^c}{RT} \left(\frac{1}{T} - \frac{1}{T_r} \right) P_{O_2}^{-\gamma} \left(\frac{\lambda}{\lambda_0} \right)^\beta} \]

- Solid solution model for PtO\(_x\) formation using cyclic voltammetry at \(80^\circ C \), 100% RH, 1.5 atm, 0.5 l/s 4%\(H_2 \) & 0.5 l/s \(N_2 \), 30-min constant potential hold

\(Pt + H_2O = PtOH + H^+ + e^- \)

\(PtOH = PtO + H^+ + e^- \)

\(\theta = \theta_{PtOH} + \theta_{PtO} \)

Mass Transfer Overpotential Correlation

- Mass transfer overpotentials derived from pol curves do not correlate with mass activity
 \[\eta_m = E_N - E - iR^m - \eta_c - \eta_a \]

- Product representation of \(i_L \) - current density at which \(\eta_m = 450 \text{ mV} \)
 \[i_L = i_L(P,P_{O2})f_1(T)f_2(\Phi) \]

- Mass transfer overpotential correlation
 \[\ln(\frac{\eta_m}{\eta_{mL}}) = F(P,T,X_{O2},\Phi,i/i_L) \]

- \(\eta_m \) correlation used to obtain expanded polarization data
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>annealed</td>
</tr>
<tr>
<td>A<sub>Pt</sub></td>
<td>Pt electrochemical specific area</td>
</tr>
<tr>
<td>b</td>
<td>Tafel slope</td>
</tr>
<tr>
<td>Cl</td>
<td>cathode interlayer</td>
</tr>
<tr>
<td>d</td>
<td>de-alloyed</td>
</tr>
<tr>
<td>E</td>
<td>cell voltage</td>
</tr>
<tr>
<td>E<sub>N</sub></td>
<td>Nernst potential</td>
</tr>
<tr>
<td>i</td>
<td>current density</td>
</tr>
<tr>
<td>i<sub>0</sub></td>
<td>exchange current density</td>
</tr>
<tr>
<td>i<sub>0r</sub></td>
<td>reference exchange current density</td>
</tr>
<tr>
<td>i<sub>L</sub></td>
<td>limiting current density</td>
</tr>
<tr>
<td>L<sub>Pt</sub></td>
<td>Pt loading</td>
</tr>
<tr>
<td>n</td>
<td>no of electrons</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>R</td>
<td>gas constant</td>
</tr>
<tr>
<td>R<sub>cf</sub></td>
<td>CCL O<sub>2</sub> transport resistance</td>
</tr>
<tr>
<td>R<sub>cs</sub></td>
<td>cell to stack additional resistance</td>
</tr>
<tr>
<td>R<sub>d</sub></td>
<td>GDL O<sub>2</sub> transport resistance</td>
</tr>
<tr>
<td>R<sub>g</sub></td>
<td>gas channel O<sub>2</sub> transport resistance</td>
</tr>
<tr>
<td>R<sub>m</sub></td>
<td>mass transfer resistance</td>
</tr>
<tr>
<td>R<sub>c</sub></td>
<td>cathode ionic resistance</td>
</tr>
<tr>
<td>R<sub>Ω</sub></td>
<td>high-frequency resistance (HFR)</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>SR</td>
<td>stoichiometry</td>
</tr>
<tr>
<td>S<sub>Pt</sub></td>
<td>Pt surface roughness</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>T<sub>r</sub></td>
<td>reference temperature, 353 K</td>
</tr>
<tr>
<td>X</td>
<td>mole fraction</td>
</tr>
<tr>
<td>Δ<sub>H</sub><sup>c</sup></td>
<td>ORR activation energy</td>
</tr>
<tr>
<td>α</td>
<td>symmetry factor</td>
</tr>
<tr>
<td>β</td>
<td>relative humidity dependence</td>
</tr>
<tr>
<td>γ</td>
<td>O<sub>2</sub> partial pressure dependence</td>
</tr>
<tr>
<td>δ<sub>c</sub></td>
<td>cathode electrode thickness</td>
</tr>
<tr>
<td>δ<sub>d</sub></td>
<td>GDL thickness</td>
</tr>
<tr>
<td>δ<sub>l</sub></td>
<td>liquid layer thickness</td>
</tr>
<tr>
<td>ε<sub>i</sub></td>
<td>ionomer volume fraction</td>
</tr>
<tr>
<td>ε<sub>d</sub></td>
<td>ε/τ in dry portion of GDL</td>
</tr>
<tr>
<td>ε<sub>t</sub></td>
<td>ε/τ in wet portion of GDL</td>
</tr>
<tr>
<td>η<sub>a</sub></td>
<td>anode overpotential</td>
</tr>
<tr>
<td>η<sub>c</sub></td>
<td>cathode overpotential</td>
</tr>
<tr>
<td>η<sub>m</sub></td>
<td>mass transfer overpotential</td>
</tr>
<tr>
<td>η<sup>a</sup><sub>s</sub></td>
<td>HOR kinetic overpotential</td>
</tr>
<tr>
<td>η<sup>c</sub><sub>s</sub></td>
<td>ORR kinetic overpotential</td>
</tr>
<tr>
<td>θ</td>
<td>oxide coverage</td>
</tr>
<tr>
<td>λ</td>
<td>water uptake</td>
</tr>
<tr>
<td>σ<sub>c</sub></td>
<td>cathode ionic conductivity</td>
</tr>
<tr>
<td>σ<sub>m</sub></td>
<td>membrane conductivity</td>
</tr>
<tr>
<td>τ</td>
<td>tortuosity</td>
</tr>
</tbody>
</table>