

Affordable, High Performance, Intermediate Temperature Solid Oxide Fuel Cells

PI: Bryan Blackburn, Ph.D. Redox Power Systems, LLC 6/5/2017

Redox Cube

•25 kW, natural gas, stationary power system

- > 50% efficiency
- •Compact (~1 m³)
- •Lightweight (< 1000 lbs)

FC115

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

 Project Start Date: 	10/01/2014		
Project End Date:	03/31/2016		
No Cost Extension Ending:	03/31/2017		
	\$1,340,566		
 Total Project Budget: 	\$1,340,566		
Total Project Budget: Total Recipient Share:	\$1,340,566 \$342,399		
 Total Project Budget: Total Recipient Share: Total Federal Share: 	\$1,340,566 \$342,399 \$998,167		

Total Recipient Share Spent: \$346,162
Total Federal Funds Spent: \$998,167

EERE Project Partners

- Project Lead: Redox Power Systems
 - cell/stack dev. & test
- Trans-Tech Inc. cell manufacturing
- MTech commercialization
- Univ. of Maryland fundamental cell R&D

Fuel Cell Barriers Addressed

• A. Durability

- Redox SOFC has lower operating temperatures than competing SOFCs
- Internal reforming with catalysts for enhanced sulfur and coking tolerance

• B. Cost

- No PGM materials
- Lower operating temperature allows use of simple stainless steel, COTS compressive gaskets
- Fewer cells due to higher power density
- Lower system cost

C. Performance

- 10 cm by 10 cm anode supported cell previously demonstrated > 1 W/cm² at 650°C (natural gas)
- Maintain performance at ~600°C through various cell enhancements, and improve stability
- High quality heat available for combined heat and power (2020 FCTO target for 90% CHP efficiency)

Relevance:

Redox Value Proposition for Intermediate Temperature (IT) SOFCs

High Energy Conversion Efficiency To Reduce Petroleum Consumption

- Direct chemical to electrical efficiency of 55% (greater than 2020 FCTO target)
- Combined heat and power (CHP) applications as high as 90% (2020 FCTO target)

Fuel Flexibility For a Diverse Energy Infrastructure

- Conventional fuels (natural gas, gasoline, diesel, etc.)
- Biofuels (biogas, ethanol, biodiesel) compatible with high CO₂ levels in fuel
- Hydrogen and syngas

High Specific & Volumetric Power Density to Reduce Costs/Market Barriers

- High power densities at lower temperatures reduce costs and enable compact power systems
- Lower temperatures for better thermal cycling & rapid startup (*advantages in MYRDD '12*)
- Appeal for reduced weight systems in commercial, defense, and consumer applications drives widespread adoption and leverages economies of scale to further reduce cost

Reduced Pollution and Greenhouse Gas Emissions.

- Higher efficiency results in ~1/2 the CO₂/kWh released compared to typical internal combustion (IC) engines
- Negligible particulate, CO, hydrocarbon, or NO_x pollution.

Relevance: Project Objectives

• To improve the performance/durability of Redox technology through the:

- development of an optimized cell with increased open circuit potential (OCP) and thus greater fuel efficiency for natural gas fueled, IT operation of ~600 °C;
- optimization of compositions and microstructures for the cathode to increase power density, and the anode to improve carbon- and sulfur-tolerance in hydrocarbon fuels for IT operation;
- use of a custom multiphysics model and advanced materials to optimize the performance of stack designs for IT operation; and
- creation of cell performance maps and demonstration of a stack for IT operation under CHP conditions with natural gas and minimal external reforming.

• Reporting period (4/1/2016-3/31/2017) focus on scale-up and test:

- Achieved ASR $\leq 0.2 \Omega$ -cm² at 600 °C with 10 cm by 10 cm (10x10) porous anode (Gen.-2) cells
- Achieved 12 and 3 cell 5 cm by 5 cm (5x5) Gen.-2 stack tests with performance comparable to 10 cm by 10 cm and 5 cm by 5 cm single cell tests, demonstrating scalability
- Achieved 1.6 W/cm² & 1.0 W/cm² with 5x5 Gen.-2 cells at 650 °C & 600 °C, respectively
- Successfully integrated a CHP test apparatus with a 20-cell (Gen.-1 cell) stack, demonstrating greater than 10% improvement in fuel utilization recovery from cathode exhaust after high temperature regeneration. Follow-on work to utilize Gen.-2 cells.

Approach Summary: IT-SOFC Stack

Optimized stack designs for IT operation

- Develop catalyst infiltratable, porous anode (Gen.-2 SOFC) for low ASR and high power density
- Scale-up button and 5 cm x 5 cm SOFC and infiltration approach to 10 cm x 10 cm cells

Increased efficiency

Increase open circuit voltage with improved cathodes → infiltration

Higher Power Density

- Improve carbon/sulfur tolerance with catalyst infiltration into asfabricated porous anodes (10 cm by 10 cm)
- Optimize cathode infiltration to increase power density (reduce cost)

Stack demo under CHP conditions

- cell performance maps for stack, feed results back to model for design optimization
- Stack demo under residential CHP scenario using natural gas and minimal external reforming

D. Ding et. al. Energy Environ. Sci., 7, pp. 552–575 (2014)

Approach/Milestones

Task/Milestone	Original Due Date	New Due Date*	% Completed
1.0. Gen2 Porous Anode Cell Development for Improved IT Efficiency M1.1: Button Cell OCP of ≥ 0.9 V at ≤ 600 °C M1.2: 10x10 Cell OCP of ≥ 0.9 V at ≤ 600 °C	M6 M12	n/a n/a	100% 100%
 2.0. Design & Optimization of High Performance Electrodes M2.1: Button Cell ASR ≤ 0.2 Ω-cm² & ~1 W/cm² at ≤ 600°C M2.2: 10x10 Cell ASR ≤ 0.2 Ω-cm² at ≤ 600°C M2.3: Achieve degradation rate ≤ 2% per 1,000 h at ≤ 600°C with 10x10 cells 	M9 M15 M18	n/a M30 M30	100% 100% 100%
3.0. Optimize Gen2 Stacks for IT Operation M3.1: Low ASR Interconnects & Contacts M3.2: Validation of updated Cell/Stack Modeling Tool	M9 M3	n/a n/a	100% 100%
4.0. Stack Demonstration M4.1: Develop IT-SOFC Stack Performance Maps M4.2: Demonstrate Stack Under CHP Conditions	M15 M18	M30 M30	100% 100%

2.0. Design & Optimization of High Performance Electrodes

- Increased as-fabricated anode porosity without compromising mechanical strength
 - Modified composition for 2x increase in mechanical strength of Gen.-2 (porous) anode vs. Gen.-1 (nonporous anode)
 - New anode composition phase and morphological stability confirmed after ~1,000 h of operation

- Infiltrate nanoparticle catalysts into porous anode and cathode

- Open circuit voltage improved by as much as 50 mV with infiltration
- Custom infiltration system developed to selectively infiltrate cathode and anode, and scaled to 10 cm x 10 cm cell production
- Infiltrate demonstrated to retain fine structure after ~1,000 h of operation

SEM of anode intentionally fractured surface

Anode composite scaffold

Infiltrate after ~1,000 h operation at 600-650 °C

• 2.0. Design & Optimization of High Performance Electrodes

- Achieved M2.2: 10x10 Cell ASR $\leq 0.2 \Omega$ -cm² at $\leq 600^{\circ}$ C

• 2.0. Design & Optimization of High Performance Electrodes

- Additional M2.2 Progress: 5x5 Gen.-2 SOFC evaluation

1.6 W/cm² with Gen.-2 5x5 at 650 °C 1 W/cm² at 600 °C

• 2.0. Design & Optimization of High Performance Electrodes

- Additional M2.2 Progress: Gen.-2 half-cell camber and scale-up

Low camber of 10 cm x 10 cm Gen.-2 cells achieved with optimized firing and composition

- Production partners successfully fabricated >7,500 sq. in. of Gen.-2 anode tape
- >24 15 cm x 15 cm green half-cells produced and from these >16 5 cm x 5 cm cells fabricated at in-house and production partner facilities
- Multiple ready to test Gen.-2 10 cm x 10 cm half-cells also produced

2.0. Design & Optimization of High Performance Electrodes

-Achieved M2.3: Achieve degradation rate $\leq 2\%$ per 1,000 h at $\leq 600^{\circ}$ C with 10x10 cells (minimum of 300 h tested)

No voltage degradation after 500 h at 600 °C for 5 x 5 Gen.-2 cell

Decrease in ohmic ASR with time, no increase in non-ohmic ASR over ~500 h at 600 °C

10 cm x 10 cm Gen.-2 SOFC also exhibited increase in voltage under load at 600 °C over >60 h of operation 6/5/17

4.0 Stack Demonstration

- Achieved M4.2: Demonstrate Full Stack Under CHP Conditions

Successfully fabricated and tested a 12 cell Gen.-2 5x5 stack at 600 °C with dry H₂ fuel

- Power density of stack similar to 5x5 and 10x10 single cell tests (for a given current density)
- Open circuit voltage and ASR slightly less than single cells possibly due to temperature variations within stack

Collaborations

EERE Project Collaborators

- Trans-Tech, Inc. (*ceramic powder development*)
- MTech (*incubator & business growth*)
- University of Maryland (*cell R&D*)

Redox Additional Partnerships

- Large datacenter player (server rack embedded power)
- Strategic Analysis Inc. (*techno-economic analysis*)
- Nat'l Fuel Cell Research Center, UC-Irvine (*independent test*)
- Colorado School of Mines (*fuel processing/system expertise*)
- Trans-Tech, Inc. (production cell manufacturing)

Technology Transfer Activities

- Redox has developed an ISO 9001 SOFC cell manufacturing and development chain over the past five years
 - Gen.-1 and Gen.-2 production cells available in partnership with Trans-Tech, Inc.
 - Use scaled-up production, porous anode cells in EERE, followed by development of specific QC procedures for the particular cell variant
 - Take final, optimized specifications and processes into manufacturing environment and finalize QC procedures
- Redox techno-economic analysis & T2M work leverages efforts from other Programs and partners
 - Strategic Analysis Inc. (SA) partner on Redox ARPA-E REBELS project has extensive experience with design for manufacturing and assembly (DFMA)[™] cost analysis of fuel cell systems & energy devices
 - Cell and stack model updated, with system model updates on-going
 - Market input from datacenter, large retail chains, utility and other partners represent both development/demonstration partners and end-users
 - Commercialization guidance from experienced MTech staff

Project Summary

Objectives

- to improve the performance/durability of Redox technology ~600 °C through development of an optimized Gen.-2 porous anode based solid oxide fuel cell
- guided by a custom multiphysics model, culminating in an operating stack demonstration under combined heat and power (CHP) conditions.

Relevance

- High energy efficiency reduces hydrocarbon consumption, pollution, & greenhouse gas emissions
- fuel flexibility supports a diverse energy infrastructure; and
- high power density reduces costs & market barriers to increase adoption and manufacturing economies of scale

Approach

– Optimize a Gen.-2 porous anode, GDC electrolyte, cell for 600 °C stack CHP demo.

Accomplishments

- − Achieved ASR ≤ 0.2 Ω -cm² at 600 °C with 10x10 porous anode (Gen.-2) cells
- Achieved 12 and 3 cell 5x5 Gen.-2 stack tests with performance comparable to 10x10 and 5x5 single cell tests, demonstrating scalability
- Achieved 1.6 W/cm² and 1.0 W/cm² 5x5 Gen.-2 cell power densities at 650 °C & 600 °C, respectively

Collaborations

EERE project leverages strong group of academic (UMD, UCI, CSM), manufacturing & commercialization (Trans-Tech, MTech, SA), & end-user partners beyond core EERE team.