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Project Overview

Timeline
* Project Start Date: June 1, 2015
* Project End Date: May 31, 2017 .

Budget .

* Total $1,200,496
- DOE share $959,334

- Contractors share $241,162 .
« Spent ~ $965,000 (by Mar. 2017)
Giner Researchers .

Shuai Zhao and Tom McCallum
Collaborators

* SUNY-Buffalo: Prof. Gang Wu
and Shiva Gupta

 NREL: Drs. Bryan Pivovar and
Shaun Alia, Andrew Park

Barriers Addressed
Activity (catalyst; MEA)

Durability (catalyst; MEA)
Cost (catalyst; MEA)

Technical Targets

Design and develop ORR/OER
bi-functional oxide catalysts

Integrate ORR/OER bifunctional
oxide catalysts and alkaline
membranes to develop highly
efficient reversible alkaline
membrane fuel cells (AMFCs)
for stationary energy storage



Reversible Fuel Cells
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=  Water electrolyzer is an ideal device to store energy from wind mills and
solar farms, where surplus (off peak) energy is nearly free
= Stored H, can be used for fuel cells to generate electricity in peak time



Technical Approaches
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Technical Milestones

Time Milestone Description Completion

Q1 Synthesize BaTiO,, perovskites with 3 different oxygen vacancy concentrations 100%
Q@ Prepare 3 other oxygen-deficient AA'BB'0,, multiple perovskite catalysts (e.g., BaSrCoFeO,, 100%
or BaSrMnCr0O,,) with optimized defect structures
Reduce perovskite particle size to nanoscale (<10 nm) with much increased surface areas
Q3 : 100%
(>20 m?/g)
Prepare 3 AB,.,C,0; spinel catalysts (A, B and C represent Co, Mn, Fe or other Metals) with
Q3 NG 100%
particle size <10nm
- /WQ“: BN in ROE, demonstrate ORR activity > 1 mA/mg oxide at R-free 0.9 V; and OER activity > 15 100%
mA/mg oxide at IR free 1.6 V.
Provide 20g of PF AEM material in membrane/ ionomer form Membrane conductivity >0.05 100%
S/cm at 60°C and 100% RH; H, permeability: 102 mol/(kPa.s.cm)
3 AEl ionomer categories and 5 ionomer loadings will be evaluated to identify the best
electrode composition 100%
Q6 Achieve RFC performance 0.55V for fuel cell and 2.0V for electrolyzer, both at 600mA/cm? 100%
Q7 Achieve fuel cell and electrolyzer life of S00 hours with less than 10% performance decay 30%
Q8 Generate a full report of catalyst and reversible fuel cell economics 50%

Note: Q6 milestone was partially modified after project review meeting in February 2017



Accomplishment 1: Synthesis of Co;0,-0CNT
Catalysts (Giner)
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Zhao et al, Applied Catalysis B: Environmental, 2017 203, 138-145.



Accomplishment 2: Development Stable Mn based
Graphitized Carbon Nanostructure (UB)

Low-cost and scalable synthesis Promotional role of Mn doping
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Remarkable Stability of Mn-based Nanocarbon Catalysts

Mn doping compromises the initial ORR and OER activity

All Activity measurements were recorded in O, saturated 1.0 M NaOH
with 900 rom and 1600 rom for ORR and OER, respectively.
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ORR and OER initial activities decreases as Mn is introduced
A Mn content of x = 4 is the recommended for a tradeoff of activity and durability
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Remarkable Stability of Mn-based Nanocarbon Catalysts

Comparison between Mn and Pt-Ir black catalyst

0.0 to 1.9 Vin O, saturated 0.

1 M NaOH, 25°C, 500 mV/s
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Mechanistic Evaluation of the Stability Enhancement

Raman Spectroscopy
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Higher degree of carbon graphitization
was achieved because of sufficient Mn
doping .

Larger number of carbon layers in Mn-
rich catalysts leads to better corrosion
resistance of carbon

Existence of MnO and FeCoNiMn alloys
provide protection to carbon

10
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Accomplishment 3: Carbon-free Metal Oxide Catalysts (UB)

Low-cost and scalable hydrothermal synthesis

Hydrothermal Treatment at
160°C, 12hrs.

Solvent: 1,3-Propanediol
and Ethanol

Heat Treatment Ramping
Rate 2°C/min

Cobalt Precursors Ni Precursors
+ Hydrothermal
Treatment at 12
12hrs

Heat Treatment in Air
at 350°C for 2hrs

Solvent: Water

Osgooh et al, Nano Today 2016, 11, 601-625
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The XRD and Raman confirmed NiCo,0, phase and peaks for Nickel-Cobalt Oxide

12
are well in agreement confirmation the formation of NiCo,0, phase.



Accomplishment 4: New AEMs (NREL)

Small Molecule Analog Stability
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PF AEM lonomer Dispersions

Tested MEAs
1.20 350 1. Red

NREL Gen 2 PFAEM (34 um)
300 NREL Gen 2 ionomer
250 ?g
-é: 2. Blue
200 £ NREL Gen 1 PFAEM (45 um)
£ Tokuyama AS-4 ionomer
150 §
(]
*g MEA specifications
198 Pt/HSC: 0.4 mg,,/cm? A/C
—AS-4 Binder 50 Temp: 60°C
—Gen 2 Binder RH: 100% A/C
0.00 0 Pressure: 121 kPa A/C
0 200 400 600 800 1000 Flow: 0.2 L/min
Current Density (mA/cm2) Gases: Hz/Oz
HFR: 145 mQ-cm?
PFAEM Gen 2 polymer has
been dispersed in n- PF AEM electrode performance has surpassed commercial
propanol/water mixtures AS-4 ionomer with equivalent and symmetrical electrode
and successfully utilized as loadings. Optimization underway.

AMFC electrode binder 14



Accomplishment 5: MEA Performance Evolution (Giner)

3 3.0
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» Steady Progress has been made for MEA performance improvement
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Baseline MEA Performance and MEA Design

Reversible Pol Scans MEA Design
60 °C
25 ‘) 2. MEA fabrication method
2.0 - 3. lonomer Content

——Ptlr GDE EC

1.5 - —s—Ptir GDE w/ higher | content EC 4. Cell Temperature
-a—Ptir GDE FC

Voltage (V)

1.0 5. Liquid electrolyte

—u—Ptir GDE w/ higher | content FC
0.5 ) Membrane: Tokuyama A201
| | | | lonomer: NREL Gen 2 or U.
0 200 400 600 800 1000 Delaware PAP-based

Current Density (mA/cm?)

0.0

Cathode: PtIr (0.75,,+0.75,, mg/cm?, lonomer=20%) Anode: PtRu/C (0.7 mgp,g,/cm?, 1/C=0.8)
Fuel Cell test conditions are identical : H,/O, flowing at 1000 ccm/min, at the
temperature of 60 °C (relative humidity of 95%), and H,/O, backpressure of 30 psia

» Baseline fuel cell and electrolyzer performance attained with PGM catalysts
» Higher ionomer content (25% vs. 20%) can further improve water electrolyzer

performance Leverage with other DOE project FC154
16



Giner Co§O§/CNT Operation Performance

Fuel Cell Pol Scans Electrolyzer Pol Scans
60 °C, 95% RH 60 °C
1.2 3.0
Co304/CNT CCM FC
0.9 ~=—C0304/CNT GDE FC 2.5
2 2 20
> 0.6 >
o o
= = 15 Co304/CNT CCM EC
700 mA/cm? @0.56 V 1.0 -#-Co304/CNT GDE EC
0.0 0.5
0 300 600 900 1200 0 80 160 240 320
Current Density (mA/cm?) Current Density (mA/cm?)
1.2 3.0
~—Ptir GDE
1.0 25
< 08 ~e—C0304/CNT GDE =
% 220
E 0.6 %
E 0.4 E 1.5 ~=-C0304/CNT GDE
0.2 1.0 —a—Ptir GDE
0.0 05 1
0 300 600 Q00 1200 0 200 400 600 800
Current Density (mA/cm?) Current Density (mA/cm?)

Anode are identical for all tests: PtRu/C (0.7 mgpz,/cm?, 1/C=0.8); Cathode: Ptlr (0.75,,+0.75, mg/cm?, lonomer=20%);
Co,0,/0CNT, 3 mg/cm?, 30% ionomer, Tokuyama A201 membrane, NREL Gen 2 ionomer, otherwise noted

» In fuel cell, both CCM and GDE configuration surpassing milestone 0.55 @ 600 mA/cm?
» In electrolyzer cell, GDE configuration demonstrated much better performance than CCM one .



Co;0,/CNT Electrolyzer Performance Improvement

O,
T=60 C
3.0 3.0
25 2.5
S 20 2 20
® $
% 1.5 ~5-C0304 (30%)/CNT 30% ionomer % 1.5 ~4-C0304 (30% )/ICNT 20% ionomer
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0.5 1 14 [
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» Feeding diluted KOH solution (instead of pure water) significantly improved the
electrolyzer performance
- Performance beat modified target : 2.0 V @ 600 mA/cm?
» Performance had no decay after 7 hours, demonstrating catalyst stability



Voltage (V)

SUNY Nickle Cobalt Oxide (UB-MOE) and

Graphene Tube (UBGT-4) Performance (GDE)

UB-MOGT4: Nickel Cobalt Oxide mixed with UBGT-4 in the ratio of 1:2

Fuel Cell Pol Scans
60 °C, 95% RH

—eo—Ptir GDE

UB-MOGT4 GDE

0.8 - UB-MOx GDE
0.6 -
04 -
0.2 -
0.0 . ‘ . .
0 200 400 600 800

Current Density (mA/cm?)

1000

Voltage (V)

Electrolyzer Pol Scans

60 °C

3.0
2.5
2.0

UB-MOGT4 GDE
1.8 +

UB-MOx GDE
1.4

-a—Ptir GDE
0.5 . ‘ ‘
0 200 400 600

Current Density (mA/cm?)

Fuel Cell test conditions: H,/O, flowing at 1000 ccm/min, at the temperature of
60 °C (relative humidity of 95%), and H,/O, backpressure of 30 psia

» MOx demonstrated great electrolyzer performance but poor fuel cell performance
» MOGTA4: A performance trade off between fuel cell and electrolyzer cell

800
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Voltage (V)
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Electrode lonomer Content Influence

lonomer concentration effect-Raw Data 60 °C
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» Electrolyzer cell performance varied with various ionomer concentrations
- Optimal ionomer concentration for MO, between 16%~18%
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Voltage (V)

Cell Temperature Influence

Temperature effect-Raw Data Temperature effect-IR-corrected Data
2.5 2.0 2.2
16 < 19 .
[}
o
& ©
——UB-Mox 16% ionomer 60 C 1.2 c z 1.6 1
x © ~=—UB-MOx 16% ionomer 60C
1.6 UB-Mox 16% ionomer 70 C = "g
. o
UB-Mox 16% ionomer 80 C 0.8 g 1.3 - UB-MOx 16% ionomer 70C
1.3 ' o .
W - UB-MOx 16% ionomer 80C
1.0 ‘ ‘ :
|
10 . 0 200 400 600 800
0 200 400 600

Current Density (mA/cm?
Current Density (mA/cm?) y ( )

» Increased temperature improved electrolyzer performance most likely due to cell
resistance decrease and improved kinetics
- Electrolysis performance achieved in pure water: 2.3 V at 600 mA/cm?

21



Liquid Alkaline Solution Impact

lonomer concentration effect-Raw Data 60 °C
3.0

J

Voltage (V)
NI
Ao

1.8 UB—IVIOxiZZ% ionomer
UB-IVIOxiZZ% ionomer in KOH
i
1.4 ~—UB-MOX 18% ionomer
+UB-M0>¢:18% ionomer in KOH
1.0
0 200 400 600 800 1000

Current Density (mA/cm?)

» Feeding diluted KOH solution (instead of pure water) further increased the
electrolyzer performance:
- Over-potential dropped by 300 mV.
- Close to modified milestone 2.0 V @ 600 mA/cm?



0.1 M
KOH

Voltage (V)
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Electrolyzer Cell Durability Tests
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» Electrolysis performance in pure water decreased after 4 hours

» Electrolysis performance in diluated KOH solution remained stable
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Time (min)
0 100 200 300 400 500
Time (min)
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Summary

d  Avariety of of OER/ORR catalysts (Giner: Co;0,/CNTs and SUNY: NC-FeCoNiMn /NiCo,0,)
have been optimized with improved activity and durability:

- Graphitization degree is a key to nanocarbon stability, which can be enhanced by Mn doping;
- Interconnected carbon nanotubes growing from a dense graphitic carbon framework is the
most preferred C structure.

1 Bifunctional electrodes and MEAs have been fabricated and tested and crucial factors
impacting the cell performance investigated:

- Electrode fabrication (CCM vs GDE)

- lonomer content optimization was dependent on catalyst composition

- Elevated cell temperature enhanced cell performance

- Introduction of diluted liquid electrolyte significantly improved electrolyzer performance

O Fuel cell MEA using Giner Co,0,/CNT surpassed the milestone 0.55 V @ 600 mA/cm? and

electrolyzer performance was tremendously improved towards the target 2.0 V @ 600
mA/cm?)



Collaborations

Giner Inc. (Giner)
Hui Xu (P1), Shuai Zhao, Tom
McCallum

SUNY -Buffalo(SUNY)
Gang Wu and Shiva Gupta

National Renewable Energy
Laboratory (NREL)

Bryan Pivovar, Shaun Alia, and
Andrew Park

Prime, oversees the project; metal
oxide supported on CNTs; bi-
functional MEA fabrication and
optimization; reversible fuel cell
design; cost analysis

Graphene tube and metal oxide
based OER/ORR bi-functional
catalyst development; MEA
fabrication

AEM development; HOR/HER
catalyst development; MEA
fabrication and test
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Future Plans

- Further improve the electrolyzer cell performance

- Membrane/ionomer from Univ. of Delaware enables
operation > 90 °C

J Complete dual operation durability test up to 500
hours

J Perform techno-economical analysis

26
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Response to Major Review Comments

Comment: CNTs have been selected as a stable nanocarbon support for the OER in spite of exhibiting what
appears to be persistent corrosion at potentials higher than 1.7 V.

Response: The carbon nanotube was identified as a kinetically stable nanocarbon evidenced by long-term
potential cycling tests from 0 to 1.9 in O, saturated alkaline electrolytes. Thus, this new finding guides us to
explore the metal oxides/CNT composite bifunctional ORR/OER catalysts

Comment: need for careful investigation of stability for carbon-based supports; lack of detailed insight into
catalyst structure before, during, and after electrochemical cycling, and lack of in situ methods for structural
characterizations of catalysts. quantitative analysis of the metal oxide catalysts before and after
electrochemical cycling is needed... No details were provided about the nature of graphene oxide tubes,
including surface areas and corrosion analysis.

Response: Extensive stability tests of newly developed Mn-doped nanocarbon composite catalysts were
carried out by using 0-1.9 V cycling in RDE (25°C and 60°C) and two-electrode electrolyzers (60°C) .
Promising durability was demonstrated. Addition of Mn can significantly improve stability of nanocarbon
composite catalysts. The designed RRDE tests further indicated that the current measured during the OER is
solely due to O, evolution, rather than carbon oxidation to CO,. The structure and nitrogen doping of
nanocarbon catalysts were analyzed before and after durability tests. We have provided detailed surface area
and porosity information for these new nanocarbons as well.

Comment: A project weakness is the completely wrong selection of materials (carbon-based supports or
catalysts) for ORR and OER.

Response: Although metal oxides are well known for their stability for the OER, their activity for the ORR along
with poor electrical conductivity are far away sufficient for applications. On the other hand, nitrogen-doped
nanocarbons have demonstrated superior ORR activity to Pt in alkaline media. Although carbon is
thermodynamically unstable at the high potentials, highly graphitized nanocarbons compositing with highly
OER active metal/metal oxides hold greatly promise to be kinetically stable during the OER. Therefore, our new
approach is to developing novel metal oxide/nanocarbon composite catalysts with sufficient activity and stability
for the bifunctional ORR/OER applications, which have been demonstrated by using both RDE and MEA

studies. 59





