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FC-PAD: Consortium to advance fuel cell performance
and durability

Approach | Objectives

Couple national lab capabilities with funding
opportunity announcements (FOAs) for an influx of

innovative ideas and research
[CPAD

& FUEL CELL PERFORMANCE

AND DURABILITY
Consortium fosters sustained capabilities

and collaborations

* Improve component stability and durability

* Improve cell performance with optimized
transport

* Develop new diagnostics, characterization
tools, and models

Structured across six component and cross-

Core Consortium Team*
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FC-PAD Consortium - Overview

Fuel Cell Technologies Office (FCTO)

* FC-PAD coordinates activities related to fuel cell performance and durability
 The FC-PAD team consists of five national labs and leverages a multi-
disciplinary team and capabilities to accelerate improvements in PEMFC
performance and durability
* The core-lab team consortium was awarded beginning in FY2016; builds
upon previous national lab (NL) projects
* Provide technical expertise and harmonize activities with industrial
developers
e FC-PAD serves as a resource that amplifies FCTO s impact by leveraging the
core capabilities of constituent members
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FC-PAD Consortium — Relevance & Obijectives

Overall Objectives:

® Advance performance and durability of polymer electrolyte
membrane fuel cells (PEMFCs) at a pre-competitive level

® Develop the knowledge base and optimize structures for more
durable and high-performance PEMFC components

® Improve high current density performance at low Pt loadings

« Loading: 0.125 mg Pt/cm?total
« Performance @ 0.8 V: 300 mA / cm?
« Performance @ rated power: 1,000 mW / cm?
® Improve component durability (e.g. membrane stabilization, self

healing, electrode-layer stabilization)
® Provide support to DOE Funded FC-PAD projects from FOA-1412

® Each thrust area has a sub-set of objectives which lead to the
overall performance and durability objectives




FC-PAD Overview & Relevance

Timeline

Project start date: 10/01/2015
Project end date: 09/30/2020

Budget .

FY17 project funding: $5,150,000
As proposed: 5-year consortium with

quarterly, yearly milestones & Go/No-Go
Total Expected Funding: $25M (NLs only)

Partners/Collaborations
(To Date Collaborations Only)

o EWii Fuel Cells, Umicore, NECC, GM, TKK, USC, JMFC,
W.L. Gore, lon Power, Tufts, KIER, PSI, UDelaware, 3M,
CSM, SGL, NPL, NIST, CEA, Ulorraine, UTRC, U Alberta

e Partners added by DOE DE-FOA-
0001412 .

Barriers

Cost: $40/kW system (2020), S30/kW
(ultimate); $14/kW._ . MEA (2020)

Performance @ 0.8 V: 300 mA / cm?

Performance @ rated power: 1,000
mW / cm? (150 kPa abs)

Durability with cycling: 5,000 (2020)
— 8,000 (ultimate) hours, plus 5,000
SU/SD Cycles

Mitigation of Transport Losses
Durability targets have not been met

The catalyst layer is not fully under-
stood and is key in lowering costs by

meeting rated power.

Rated power@ low Pt loadings
reveals unexpected losses




Objective: How we get there

® Develop the knowledge base and optimize structures for more
durable and high-performance PEMFC components

® Understanding Electrode Layer Structure
% Characterization

® New Electrode Layer Design and Fabrication
& Stratified (Spray, Embossed, Array), Pt - Deposition, Jet Dispersion

® Defining/Measuring Degradation Mechanisms
& Membrane, Catalyst Pt-alloy dissolution

FC-PAD Presentations

* FC135: FC-PAD: Fuel Cell Performance and Durability Consortium (Borup, LANL)
— Overview, Framing, Approach, and Highlights/Durability

 FC136: FC-PAD: Components and Characterization (More, ORNL)
— Concentrate on Catalysts and Characterization

 FC137: FC-PAD: Electrode Layers and Optimization (Weber, LBNL)

— Concentrate on Performance - MEA construction and modeling
* FC155(3M), FC156 (GM), FC157 (UTRC), FC158 (Vanderbilt) FOA-1412 Projects




Approach: Electrode Layers and Optimization

Formation process

Film & Ink

Specific designs and
Characterization , components
....... \ _ _ Formation and  (FSSrassas i
Dispersions Design |
Interactions N\ :

lonomer thin films
Transport properties

Optimization

Component | and Cell
Characterization Understanding Performance

‘ and Diagnostics | N\ and Diagnostics |

Visualization \_/ Limiting current
GDL/flowfield droplets AV analysis

MPL properties Water and thermal
Phase-change-induced flow management
Mathematical modeling




Accomplishments

Ink Stability

® Inks are unstable

& Model and experiments demonstrate large carbon aggregates that drop out of suspension

» Secondary peak forms after a couple of hours Attached fonomer chains

» Governed by collisions and interparticle forces

Electric double layer

= Settling
& lonomer helps to stabilize the ink

oy o
. Coulombic/Electrostatic 3 . Van der Waals Coulombic/Electrostatic
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Interparticle forces and interactions key towards understanding CL formation
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Accomplishments

Catalyst Layer Structure

® Catalyst structures are
heterogeneous

% Impacts analysis of
transport phenomena

% lonomer preferentially
interacts with Pt/V
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Accomplishments
Electrode Microstructure Analysis

® Developed method to reconstruct electrode microstructure from multiple data

Y Nano-CT, TEM, USAXS data Resulting Microstructure
» C, Pt, pore size distributions

» lonomer visualized and computed 40
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Accomplishments

Local Transport Resistance

® Hydrogen limiting current can be used to yield more information

® Can use H, data to correct polarization
b . . .
— T T curves for mass-transport resistance
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27T o4t {04
. . o ;;
® Resistance values depend on technique &3 ¥
02F 402
% Suggests not all Pt is active
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Accomplishments
Local Transport Resistance

® Use oxygen limiting current to measure the local transport resistance

& Value depends on accurate measurement of ECA
» Varies depending on carbon support
& Pt/V is a better baseline for novel ionomers
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Ro,™ [s/cm]

S

Accomplishments

Local Transport Resistance

Comparison of hydrogen- and oxygen-derived local transport resistance
% Hydrogen is lower and less humidity and more temperature dependent than oxygen

» Consistent with ionomer difference in bulk permeability
> Driven by change in (bulk) diffusivity

Oxygen Bulk Nafion Hydrogen
20 —=® Data Source: Borka 1996. Gode 2002. Chattot 2014. Hofner 2015. 6
5
15 2 II\Dn'Irgmbrane S s
8 64g — — 4
8 - £
10 2 ¢ ) : ' A
< T o
52 ' I g 2
o ) : ) o Wet o
o ' ] . Membrane
° Sl ]! 11 1 o T T 1
I IN 803 . ‘: o R B . o
SR o 100
0 I B - 60 80 90 60 20
75 60 45 30 i 2 , o
Temperature (°C) Relative Humidty (%) Relative Humidity
RH [%]
Gas Lig/dry
Dsel (D |Ssel(SLig/
lig/D dry) S dry)
H2 61.5 1.0
o2 739.1 0.2
CrA Diagnostics suggest ionomer-related transport is limiting
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Accomplishments

Influence of Environment on lonomer Thin Film

‘Real’ catalyst-layer phenomenon

2-4nm lonomer 10-70nm 30 H ‘ ‘ E”. ‘ t ‘ [ \
BT Ipsomertry
Anode @ Air G ISAXS
/| H, 2/2H + 2e- 25 50nm Nafion Thin-film on Pt L Lower
—_ ' critical
2 20 angle & film
o) I
_ ___ Cathode 5 density
iH"4de +0y)> 2 J
studied| using %'; 151 + f
o
= ‘f"",' Vi
[ Model experimental system } & 10f + ”%’ Higher
© )
_________________ = e 7 critical angle
| | o .
Humidified | T Eremsr | | Humidified S + "%“ & film
gas in : Pt :_»gas out /ﬁf density
| | . p
A'r | | | AII’ R | | ! 1 I
Al : : % 20 40 60 80 100

Water uptake of Nafion thin-film supported on Platinum
substrate in reducing and oxidizing environments

Relative Humidity (%)

® Oxidizing gas (Air) facilitates Pt-O growth, while reducing gas (H,) removes it
& Reducing environment promotes Pt surface, resulting in ionomer densification

& Reversible process, related to ionic and water interactions with the surface

lonomer undergoes changes with local surface conditions and environment
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Electrode Structure: Stratified

® Optimize catalyst-layer structure

Accomplishments

> Minimize local resistance effects?

CHANNEL

GOL
MPL
 MEMBRANE
Anode CL

MPL

GDL

CHANNEL ‘

® Model guided design
% Model shows gains for
stratified CL at high
current densities
> Best gains for ~2

stratified CL segments
per channel

Q FUEL CELL PERFORMANC]
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Accomplishments

Electrode Structure: Stratified

0.95

Cathode : 0.1 mg/cm? Pt/HSAC
0.85 |mp?ved kinetics
0.75

| LET
Improved MT 2 I : .33‘5

Voltage (V)
o
()]
(6}

0.55 . Add C/lonomer mixture
Baseline
% i Flat CL
0.45 80C, 100% RH & 10.5 psig
0.00 0.25 0.50 0.75 1.00 1.25
Current Density (A/cm?)

® Need filler to improve performance
% Kinetic improvement at high I/C ratio suggests higher Pt utilization

& Mass-transport improvement with low I/C ratio is likely due to reduced water retention
and better utilization of Pt

& Carbon filler made of Ketjen 300J better than Vulcan

Enhanced performance at high current densities compared to conventional layers
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Accomplishments

Electrode Structure: Meso-Structured Array

Uncatalyzed Catalyzed
domain

Catalyst Layer

Gas transport
domain domain

Proton transport

® Electrode functions separated into

different elements with a ternary array
® Controlled, low-tortuosity configuration

enables transport limitations to be
reduced or eliminated

cPA

S

3/7f2017 mod HV mdg WD spot
3:57.04 PM SE 10.00kV 26 578 x 10.0 mm 2.0

SEM image of oriented Nafion nanofibers of
200nm diameter and 5 um height

® Nafion nanofibers provide effective
proton transport through these low-
tortuosity percolating highways

® Allows the catalyst domain to have a
lower ionomer/catalyst ratio

AND DURABILITY



Accomplishments

Electrode Structure: Controlled Deposition of Pt

PtM Kv:30 5x —— 2500 um
Dwell : 2000ms SMax: 281 ROI Cnt

Scanning Pt-XRF image of Pt
deposited in a spiral on a GDL
(catalyzed spiral region roughly
1 mm wide by 10 um deep)

HAADF-STEM image
within the spiral
depicting Pt catalyst §
particles with uniform
distribution and size
(avg. 2 to 3 nm dia.)

* FUEL CELL PERFORMANCE]
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Accomplishments

Water Management: Hydrophilic MPLs

® Examine carbon nanotubes (SGL 25BN) in MPL Nano XCT
% Observe liquid water in nanotubes '

& Improved performance
> Less liquid water throughout the cell

» Diagnostics demonstrate both easier breakthrough as well as
lower adhesion force/detachment velocity from GDL

80°C, 100% RH, 1.2/2, 275 kPa

~e—25BC H2(100)/Air(100)

0.9 . e
-=—25BL H2(100)/Air(100) T8 b5
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S 07 i
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S ‘ -5
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04 S iRt
] |
0.3 T T T T T T T | g T) : EI : E
o 05 1 15 2 25 3 35 4 £ c P -
= c Uo 1 c
Current density (A/cm?) ¢ _"CU : ©
= @ ] - | Q
= © I s A . -
Detachment velocity 3m/s 5m/s = _8 ! 3 . 8
= o= 0o EI ) ". <
(18] 0.2 L
Adhesion Force 7 mN/m 8 mN/m _' : |
B VR N
-8 -200 r!) 0
Breakthrough pressure 4.4 kPa 5.7 kPa Neutron Imaging ool

Cross section position (mm)
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Accomplishments

Water Management: Hydrophilic MPLs
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|
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0 2 4 6 8
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Flooding ended test after 389 hours

10
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0.8 -
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=04
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0.1 1
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m

mETmmT

R

——-BOL : BN
—#-EOL : BN (600 hrs)

2 4 6 8 10
Time (mins)

Slightly improved high current
performance after 600 hours

® Carbon nanotubes demonstrate increased durability performance under drive cycle

& Mass-transport losses related to GDL develop during testing




Accomplishments

Water Management: Phase-Change-Induced Flow

Heating piston
#40.00 mm<’——

Sample Area %
AT

APS 7 T

173.60 mm

Cooling piston

® PCl flow observed
and quantified

¢ Slow until becomes
disconnected then
rapid evaporation

% Major role in water
and thermal
management

cPA
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Accomplishments

Modeling AV Analysis Performance Diagnostic

N

Shape of the AV curves, magnitude of AV,

and reaction order may be used to
uniquely identify limiting mechanism:

Kinetics
CL diffusion 1
GDL-MPL 1
Diffusion
CL proton 0

conductivity

BOL Pol curve

High sensitivity to Logarithmic
specific area
Low sensitivity to Exponential
diffusivity
High sensitivity to Exponential
diffusivity
High sensitivity to Linear
ionomer conductivity

AV analysis, ,

e Half Air
— Air

*

——

!
/

1000
Current (mA/cm?)

EPH
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Analysis of experimental AV shows kinetic and transport limited
Kinetic and transport parameters are adjusted to determine
relative fractions and values




Collaborations (From FOA-1412)

e The core FC-PAD team consists of five national labs
e Each Lab has one or more thrust roles and coordinators

Interactions with DOE Awarded FC-PAD Projects (FOA-1412)

Assigned a POC for each project to coordinate activities with project PI:
3M Pl: Andrew Haug — FC-PAD POC: Adam Weber

GM PI: Swami Kumaraguru — FC-PAD POC: Shyam Kocha

UTRC PI: Mike Perry — FC-PAD POC: Rod Borup

 35% of the National Lab budget defined as support to the Industrial FOA projects
e Support to these projects is primarily just beginning

* Equal support to each project

 Agreed upon 1-year SOW by ~ Feb 2017

Support Distribution

3M % GM % UTRC %
LANL 20% LANL 11% LANL 48%
LBNL 39% LBNL 25% LBNL 26%
ANL 10% ANL 15% ANL 14%
NREL 19% NREL 37% NREL 0%
ORNL 12% ORNL 11% ORNL 12%




Collaborations (non-FOA activities)

Supply SOA catalysts, MEAs

Umicore

IRD Fuel Cells Supply SOA catalysts and/or MEAs
Ford lonomer imaging studies

TKK Supply SOA catalysts

Johnson Matthey Catalysts and CCMs (as part of FC106)
GM Supply SOA catalysts and/or MEAs
lon Power Supply CCMs

GM/W.L. Gore Supply SOA catalysts, SOA Membranes,
ANL-HFCM Group SOA catalyst

Tufts University GDL, MPL imaging

KIER Micro-electrode cell studies

U Delaware Membrane durability

Vanderbilt U. Ink studies

PSI — Paul Scherrer Institute GDL imaging

S
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Collaborations (non-FOA activities)

NTNU - Norwegian Technical University GDL imaging

UTRC Cell diagnostics

3M lonomers

Colorado School of Mines Membrane diagnostics

SGL Carbon GDL Supplier

NPL - National Physical Laboratory Reference electrodes for spatial measurements
NIST — National Inst. of Standards and Tech Neutron imaging

U. Alberta GDL and flowfield modeling; ink studies

$ FUEL CELL PERFORMANCE]
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Proposed Future Work

® Inks

& Model study to elucidate interactions of ionomer with particle surfaces and solvents
» Elucidate governing binary interactions
» Direct observation of dispersions

& Measure ionomer thin-film properties under applied potential

® Catalyst-layer structure
L Continue exploration of different catalyst-layer structures
> Stratified, array, electrospun, HSC/VC layered, specific Pt deposition
& Microstructural modeling for catalyst layers
% Local resistance analysis
» Limiting current under variety of conditions, techniques, ionomers, gases, temperature, humidity
® Water and thermal management
& Explore conditioning protocols and understand how each step impacts performance
U Model interactions and examine scale coupling

» Compare to segmented cell data
> Detail model for GDL/Channel interface and droplets

& Water visualization in various components
& Explore impact of carbon type in MPLs

Any proposed future work is subject to change based on funding levels

CrPA
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Summary

Relevance/Objective:
% Optimize performance and durability of fuel-cell components and assemblies

Approach:

& Use synergistic combination of modeling and experiments to explore and optimize component
properties, behavior, and phenomena

Technical Accomplishments:
& Examined water transport throughout MEA
& Developed new catalyst-layer architectures

» Stratified and array electrodes with variations in loadings
» Pt deposition where it is needed

% Unraveling origin of local resistance

» Hydrogen and oxygen limiting current suggests ionomer film and its local morphology are dominant cause
& Developed new diagnostics and models for interpreting critical phenomena and data
& Explored ink stability and dispersions and fabrication methods

Future Work:
% Optimize catalyst-layer structure for high performance at low loadings

& Elucidate critical bottlenecks for performance and durability from ink to formation to
conditioning to testing

& Multiscale modeling of cell and components
& Explore genesis of membranes and thin films and their associated properties

CrPA

FUEL CELL PERFORMANC]
AND DURABILITY




Acknowledgements

DOE EERE: Energy Efficiency and Renewable Energy
Fuel Cell Technologies Office (FCTO)

® Fuel Cells Program Manager & Technology Manager:
& Dimitrios Papageorgopoulos
% Greg Kleen

® Organizations we have collaborated with to date

® User Facilities

& DOE Office of Science: SLAC, ALS-LBNL, APS-ANL, LBNL-Molecular Foundry, CNMS-
ORNL, CNM-ANL

& NIST: BT-2




Technical Back-Up Slides




Accomplishments

Modeling AV Analysis Performance Diagnostic

® Reaction order analysis at BOL

% Kinetics limitations are kept same at BOL & EOL

& Other limitations are increased from BOL to
EOL

& The reaction order is different from BOL to EOL
due to changing contribution of kinetics and
other limitations

> Kinetic effects are prominent at BOL, skewing the

reaction orders towards 1/2. Other effects become
more prominent at EOL.

& See change in order due to different
mechanisms at different potentials

® Different effects need to be decoupled to

S

be uniquely identified
Y Need for mathematical model

CPA
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Accomplishments

Droplets in Channel

® Develop model for water droplet movement in channels
& Need to couple to physics within the domain 150 -

K at diff f . "y . Advancing
L Look at different flow regimes an mteractlon.To 130 & B ‘ i x i ia ? A A Aa, -
o S § > } 4
o ¢
= o 110 - {
{ 20 i 1 ¢
H I L Ie & @ CAL (Exp) "L .
I %0 7 mCAR (Exp) T ’f{_
N — ‘g A CAL (Num) T + "
3 X Ie I S 70 - CAR (Num) + + *
o . Receding *
L 0 5 . 10 15 20
i LPM
» Droplet growth with Q,, = 2.5 SLPM, Q,;, = 8 SLPM Q,, [SLPM]

t =2ms t=4ms t=9ms



Accomplishments

From Differential Data to Integral Cell Model

® Determine resistances from differential cell data
& Develop governing correlations

® Predict integral cell performance using differential-trained correlations

1.1 Differential Cell Data

/Variables: P, T, RH, Xoy, i /

2. Overpotential Breakdown ain 1.0
ng, ng, iRE, iRS, Ny | Xoz
P:1.5atm ©100%
T: 80°C & 21%
®:100% ° 10%
o 6%
+ 2%
x 1%

3. N, Correlation _ R,
iL(P, T, RH, Xo2) PtO, Formation 08 M\l

nITI(P! T! RH! XOZ! I'"L)

4. Expanded Polarization Data

5. Mass Transfer Resistance

R., (P, T, RH, X0y, E, i) FC-PAD

Cell Voltage, V
o
o

|
|
|
|
|
i
#l Gas Resistance
|
|
|
|
|
|
|
|

0.4
R,(P,T,RH,X :
( o2) 6. Resistance Breakdown ; Solid Lines: n,, X
- CCL Resistance m
GDL Resistance R4: Pressure Dependent i Dash Lines: R
i R4 (T, RH, E, i) | .
&4, &¥(E. i), 5/5 Rqs: Pressure Independent oo L b N
e 0.0 05 1.0 1.5 2.0 25
P 2
Operating 7. Integral Cell Model Cell Current Density, A.cm
- 1+1D or 2+1D .
Conditions Design
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Accomplishments

lonomer Thin Films

a = 0.16 — right above critical angle

9
x10
127
—N2 baseline a=0.18
i —1st H2 purge ©10°
. ﬁ '\\_\ 2nd H2 purge 12 ——N2 baseline
> NN —Air purge A 1st H2 purge
8415k f{ il,ﬂﬂ L - -\ 2nd H2 purge
— N . S~ ] | 4 T —Air purge
T \J W \\ ~— S5k ) s
- b\.“\h\"‘m»‘-—uw& R“mmnﬂ,,rw Mwﬁ—hmm _§ v N - S —
ST =
| | | , 1.1 ' ' ' |
1.1 0 1 5 3 4 0 1 2 3 4
1 am’]
q[nm ]

® GISAXS under flowing hydrogen to reduce Ptoxides
% Peak at ~0.5 1/nm is the paracrystalline peak of the platinum surface

> Strong in N,, it disappears upon purging chamber with H,. This would indicate x-rays are not
penetrating all the way through the film

> Reappears in air, showing a reversibility

% H, is interacting with Nafion and/or Pt substrate, increasing the film density and
therefore the critical angle

Q FUEL CELL PERFORMANCE]
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Accomplishments

Impact of Fabrication Method

. . . . 0.95
® NREL Fabrication: Spray Coating
% Stratified
0.90
—
. >
CL thickness non- cathode >
. . a
uniform — ranging -g:
™.
from Zum to 10um JF o085
o SO oA TR —#—NREL MEA- PtCo 0.9 I:C N \
s e o gt ~ "NREL MEA- PtCo 0.7 I:C R
~ = -Umicore MEA- PtCo 1.2 I:C x e
. . . . . 0.80 :
® Umicore Fabrication: Proprietary non-spray 100 1000 10000
i, [mA/mg,]
1.00
—8—NREL MEA- PtCo 0.9 I:C
. s 0.90 =0 ‘NREL MEA- PtCo 0.7 I:C
CL thickness very tethode -4 Umicore MEA- PtCo 1.2 I:C
uniform - 6um 0.80
=
= 0.70
mﬂ
XL-100 membrane 0.60
0.50
Loading ECSA i 0.40
MEA [mge/em’] [m’5/ge] [mA/mg,] 0.0 0.4 0.8 1.2 1.6
NREL Fab,test MEA- PtCo 0.9 I:C 0.10 37 |+ 514 | x| 40 i [A/CI’T'IZ]
NREL Fab, test MEA- PtCo 0.7 I:.C 0.10 36 |+ 388 || 47
Umicore Fab, NREL test MEA- PtCo 0.95 |:C 0.10 40 |+ 336 |+
Umicore Fab, test MEA- PtCo 0.95 I:C 0.14 50 |* 475 | x| 35

cPA
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