

_ABORATORY

2017 DOE Hydrogen and Fuel Cells Program Review

Tailored High Performance Low-PGM Alloy Cathode Catalysts

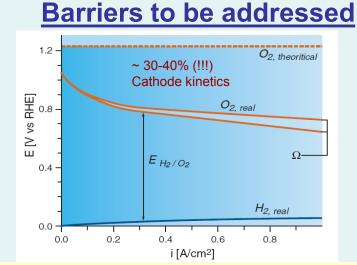
Pls: Vojislav R. Stamenkovic Nenad M. Markovic

Materials Science Division

Argonne National Laboratory

Project ID# FC140

This presentation does not contain any proprietary, confidential, or otherwise restricted information



Timeline

- Project start: 10/2015
- Project end: 10/2018

Budget

- Total Project funding \$3.6M
- Funding for FY17: \$ 1.2M

- 1) Durability of fuel cell stack (<40% activity loss)
- 2) Cost (total loading of PGM 0.125 mg_{PGM} / cm²)

3) Performance (mass activity @ 0.9V 0.44 A/mg_{Pt})

Partners:

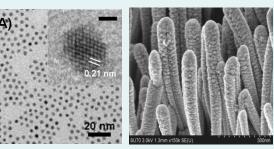
- Argonne National Laboratory MERF CSE Greg Krumdick, Debbie Myers
- Lawrence Berkeley National Laboratory Peidong Yang
- Los Alamos National Laboratory Rod Borup, Plamen Atanassov (UNM)
- Oak Ridge National Laboratory Karren More

Project Lead:

• Argonne National Laboratory - MSD – V.Stamenkovic / N.Markovic

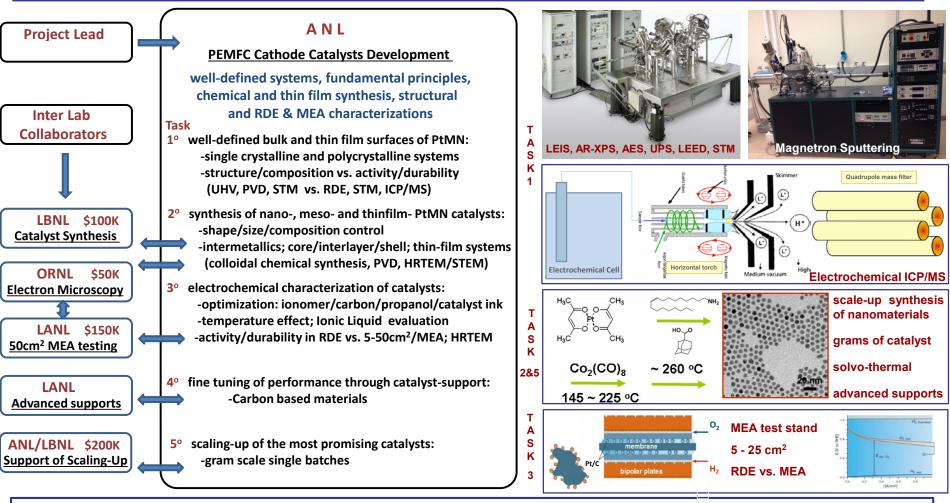
Relevance

<u>Objectives</u> The main focus of ongoing DOE Hydrogen & Fuel Cell Program is development of highly-efficient and durable Pt-Alloy *catalysts* for the ORR *with low-Pt content*


Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications ^h			
Characteristic	Units	2011 Status	2020 Targets
Platinum group metal total content (both electrodes) ^a	g / kW (rated)	0.19 ^b	0.125
Platinum group metal (pgm) total loading ^a	mg PGM / cm ² electrode area	0.15 ^b	0.125
Loss in initial catalytic activity ^c	% mass activity loss	48 ^b	<40
Electro catalyst support stability ^d	% mass activity loss	<10 ^b	<10
Mass activity ^e	A / mg Pt @ 900 mV _{iR-free}	0.24 ^b	0.44
Non-Pt catalyst activity per volume of supported catalyst ^{e, f}	A / cm ³ @ 800 mV _{IR-free}	60 (measured at 0.8 V) ⁹ 165 (extrapolated from >0.85 V) ⁹	300

Source: Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan

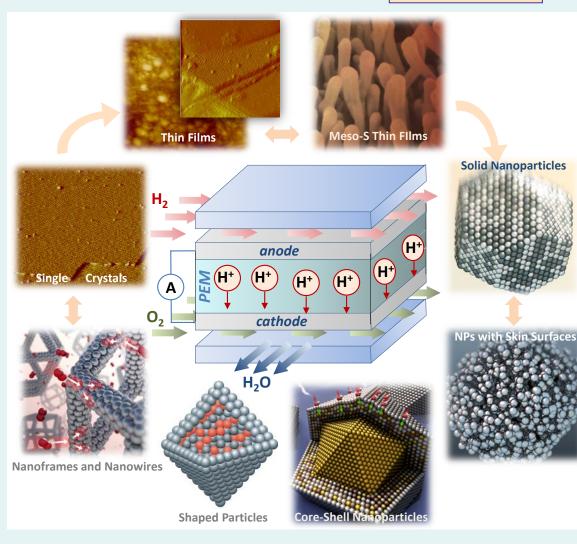
Argonne


ANL Technical Targets

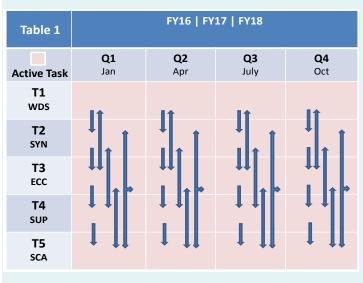
- Total PGM loading 2020 DOE target 0.125 mg_{PGM}/cm²
- Loss in initial mass activity 2020 DOE target <40%
- Mass activity @ 0.9V_{iR-free}
 2020 DOE target 0.44 A/mg_{Pt}

Approach

Materials-by-design approach - to design, characterize, understand, synthesize/fabricate, test and develop tailored high performance low platinum-alloy nanoscale catalysts



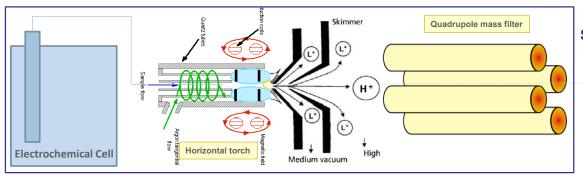
- Rational synthesis based on well-defined systems
- Addition of the elements that hinder Pt dissolution
- Prevent loss of TM atoms without activity decrease


Activity boost by lower surface coverage of spectators

Approach

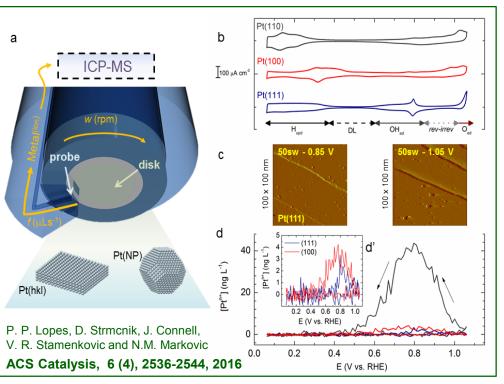
Project Management

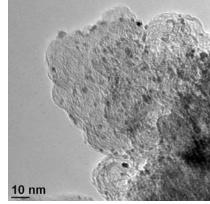
Task 1 - Well-Defined Systems (WDS) Task 2 - Synthesis of Materials (SYN) Task 3 - Electrochemical Characterization (ECC) Task 4 - Novel Support/Catalyst (SUP) Task 5 - Scaling Up of Materials (SCA)

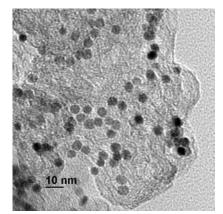

- From fundamentals to real-world materials
- Simultaneous effort in five Tasks

- Go-No Go evaluation
- Progress measures are quarterly evaluated

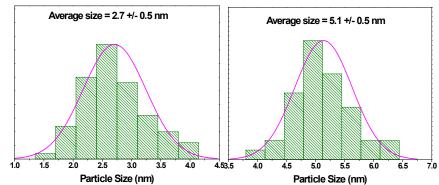
Task 1Accomplishments and Progress:

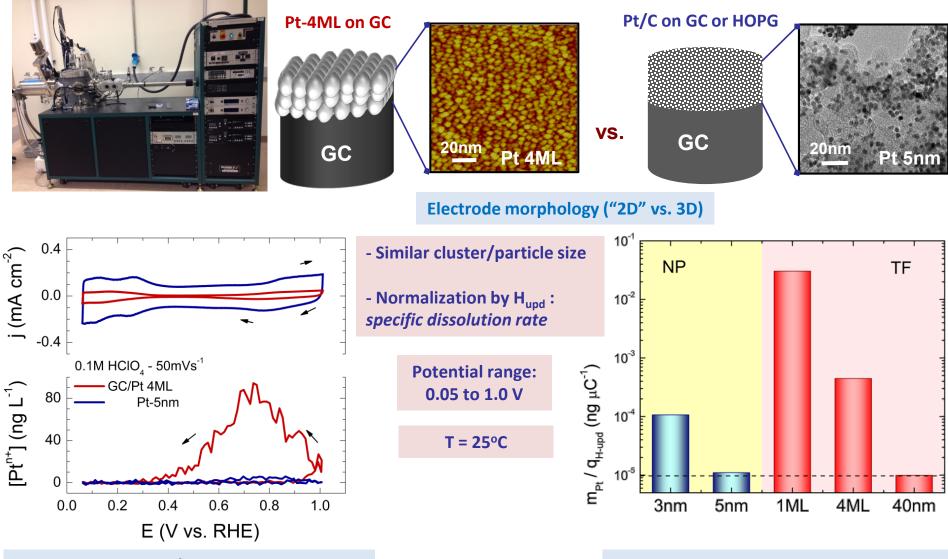

RDE-ICP/MS of Pt/C Nanoparticles


Surface Structure	Pt(111)	Pt(100)	Pt(110)	Pt-poly
Dissolved Pt per cycle [µML]	2	7	83	36
Detection Limit: 0.8 µML of Pt				


Monodisperse 20% Pt/C NPs 3 and 5nm

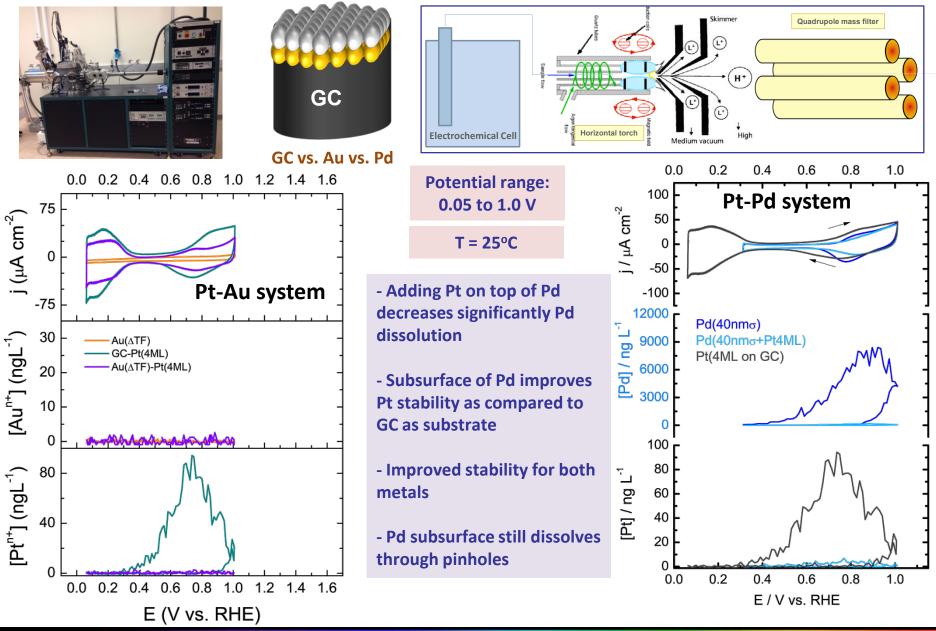
In-Situ RDE-ICP/MS


Correlation between Surface Structure - Activity – Dissolution


2.7+/-0.5 nm

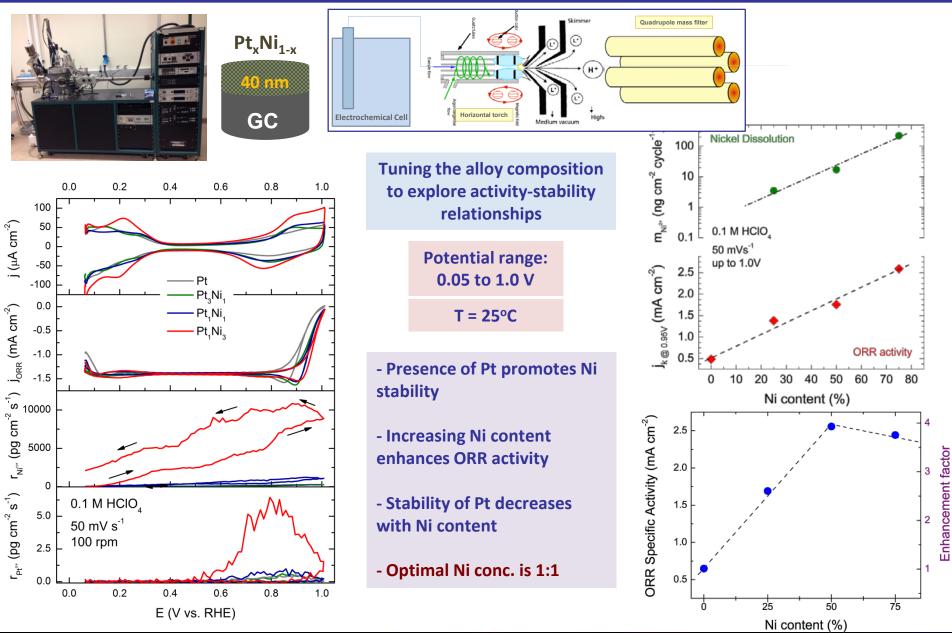
5.1 +/- 0.5nm

Task 1 Accomplishments and Progress: In-Situ EC-ICP-MS Pt-Surfaces



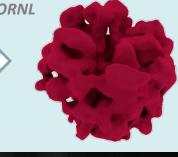
3D morphology of Pt/C layer over GC enables redeposition of Pt and attenuates dissolution

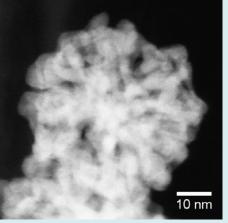
Redeposition of Pt leads to the coarsening of particles as opposed to dissolution

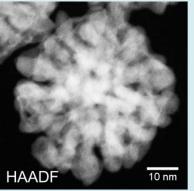


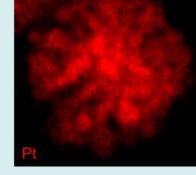
Task 1 Accomplishments and Progress: EC-ICP-MS Pt-Surfaces effect of substrate

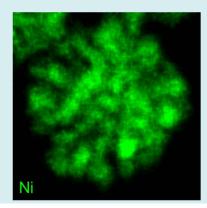
Task 1 Accomplishments and Progress: In-Situ EC-ICP-MS Pt_xNi_{1-x} Alloys

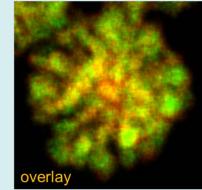


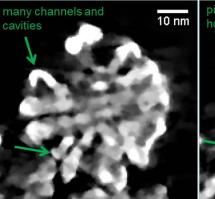

Task 2-3Accomplishments and Progress:

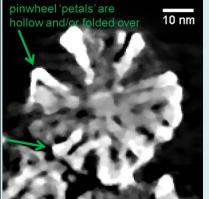

PtNi Nanopinwheels / C

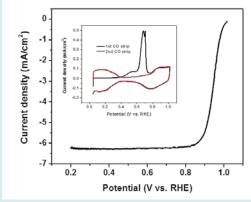

in collaboration with K.L. More, ORNL



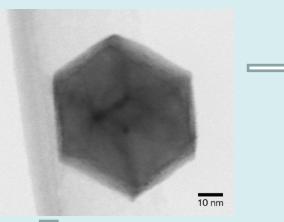


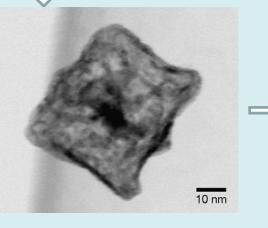






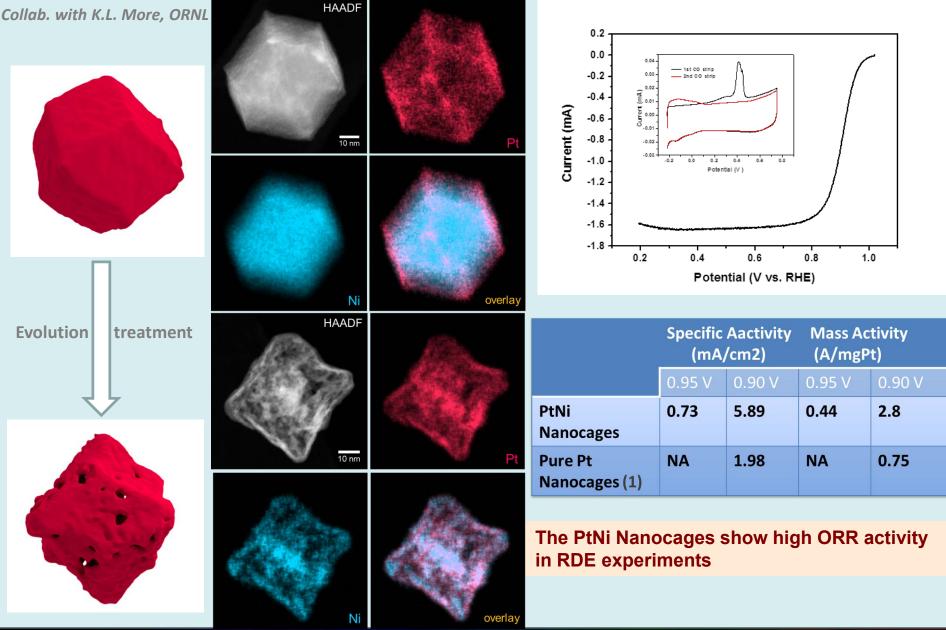
9 4.0 @0.90 V @0.90 V 8 Specific Activity (mA/cm2) - 3.5 7-6 5 4-3-Mass 2 1.0 @0.95 V @0.95 V - 0.5




Task 2 Accomplishments and Progress:

PtNi Nanocage Structure

PtNi solid polyhedra are converted into hollow nanocages after evolution treatment



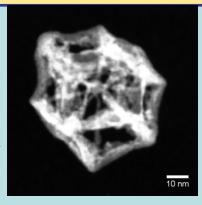
11

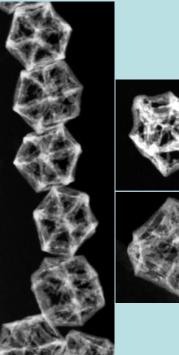
Task 2-3Accomplishments and Progress:

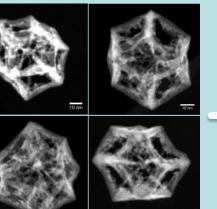
PtNi Nanocage Properties

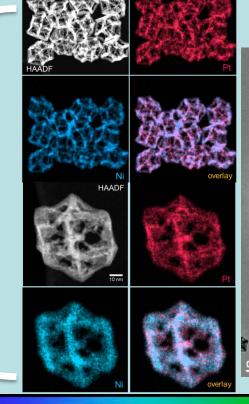
Task 2 Accomplishments and Progress: PtNi Nanoframes with Radial Joists

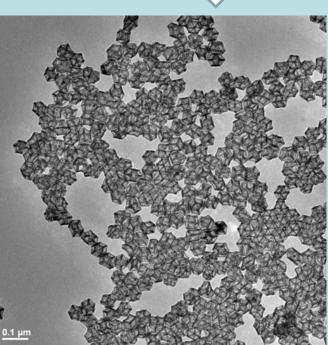
in collaboration with K.L. More, ORNL




Different than the NFs A new PtNi NFs with the radial joists



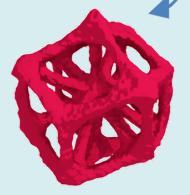



HAADF


Task 2Accomplishments and Progress:

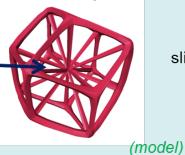
PtNi nanoframes with radial joists

in collaboration with K.L. More, ORNL

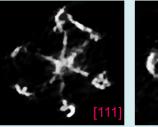

Structure analysis

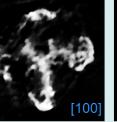
blender models: RD frame

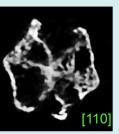
radial joists to each vertex


...& deformation added:

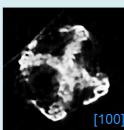
(electron tomography)

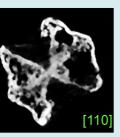

*structure is slightly deformed (concave/excavated facets with wire frame) and contains additional linkages in the interior... connecting surface vertices to central point

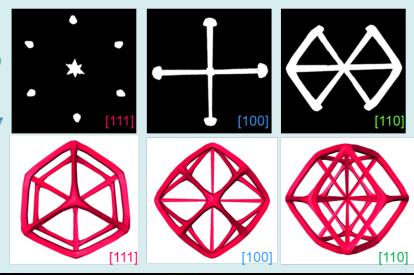

RD frame & joists



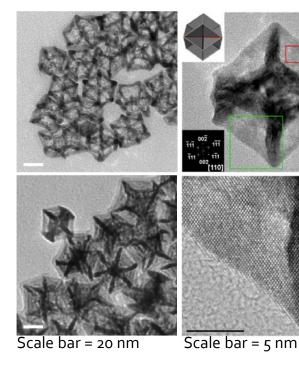
the similarity between the 3D cross-sections and cross sections of the modeled frame with radial joists suggests the majority of vertices are joined with the core, no major preference toward 100 (6x) or 111 vertices (8x)

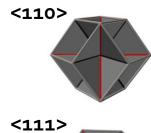

slices through volume center at different orientations:

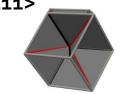




slices through volume center of blender RD frame model with joists from each vertex to center (for reference):

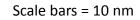


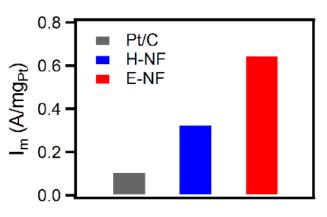



Task 2-3 Accomplishments and Progress: PtNi Excavated Nanoframes

in collaboration with Peidong Yang, LBNL

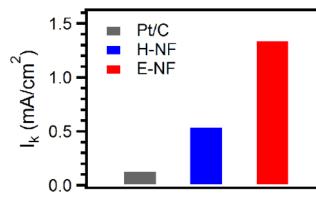
Argonne





<100>

Hollow
solidImage: SolidImage: SolidImage: SolidExcavated
solidImage: SolidImage: SolidImage: SolidHollow
frameImage: SolidImage: SolidImage: SolidExcavated
frameImage: SolidImage: SolidImage: Solid

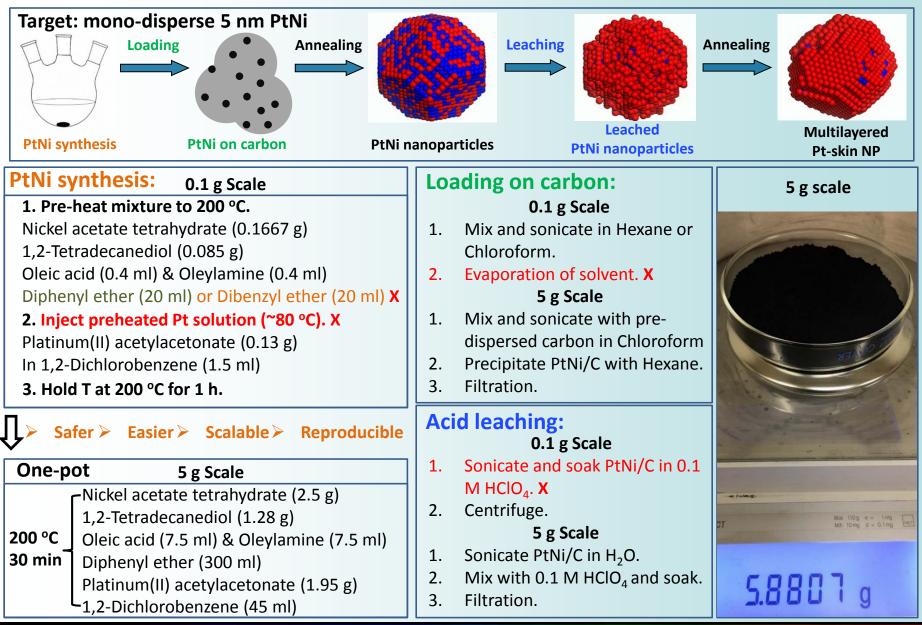


Mass Activity

Specific Activity

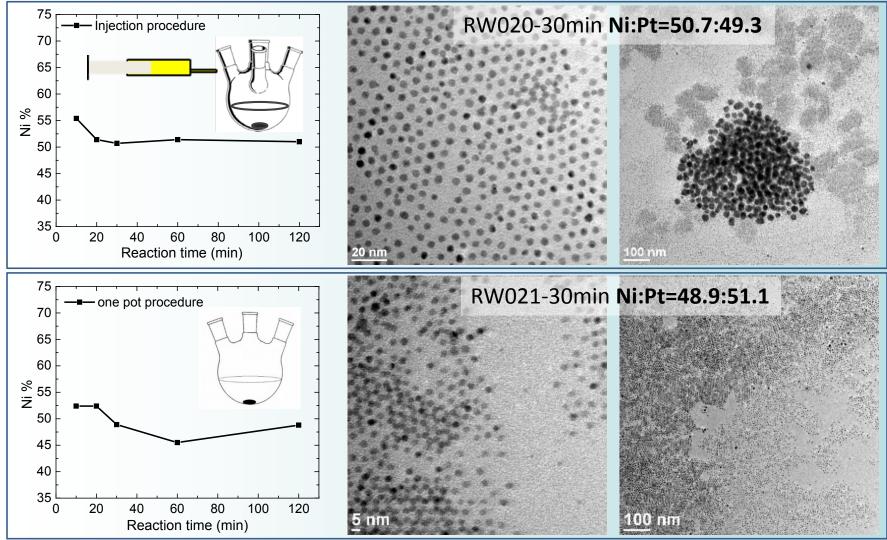
Task 5Accomplishments and Progress:

Process R&D and Scale Up


collab. with Greg Krumdick, ANL -MERF

New Material		Timeline & Milestones	
Discovery Material Performance Evaluation	Discovery	M 1-2	 Hot-injection was avoid using one-pot synthesis. Benzyl ether as solvent. No Go
Go No Go Research Chemistry		M 3	 3) Phenyl ether as solvent. 4) Best synthesis condition was established. 5) Reproducibility was confirmed. Go
Scale-up Feasibility Scale-up Feasibility No Go Go Proof of Concept	1 st stage scale up	M 4	 6) 1st stage scale up (1 g / batch) was successful. 7) New method to load PtNi nanoparticles on carbon and its separation from solvent was developed.
Material Specification Material Performance Validation Go No Go	M 5-6	 8) Reproducibility of 1st stage scale up was confirmed. 9) Pre-annealing process was investigated. 	
		M 6-7	10) Acid leaching process was modified. Go
2nd Stage of Scale-up Material Performance Validation Go No Go Technology Transfer Package	M 8-9	 11) The 2nd stage scale up (5 g / batch) was successful. 12) Acid leaching process was further investigated. 	
		M 10	13) The 2 nd stage scale up is reproducible . Go
		M 11- 12	14) MEA performance; New IP application ; Sample send out; Manuscript preparation.

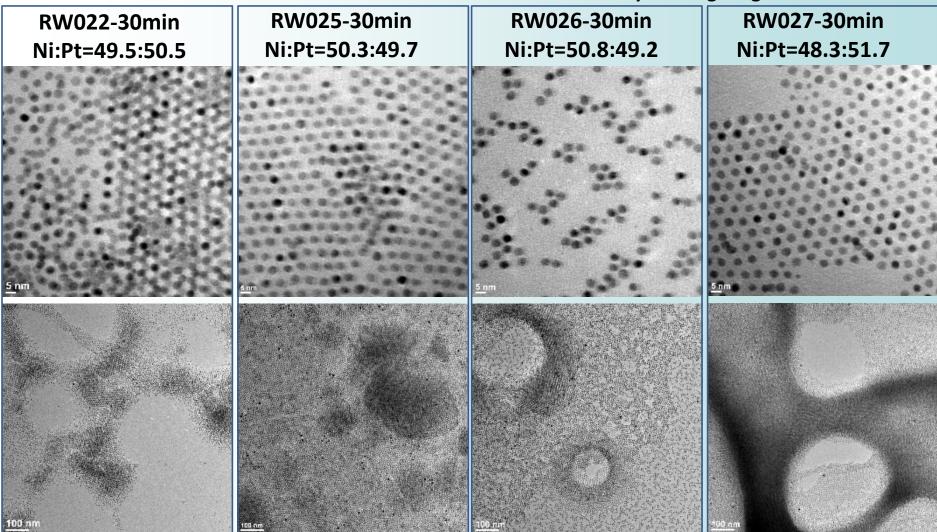
Task 5Accomplishments and Progress:


Process overview: 0.1 g vs. 5 g

Task 5 Accomplishments and Progress:

in collaboration with Greg Krumdick, ANL -MERF

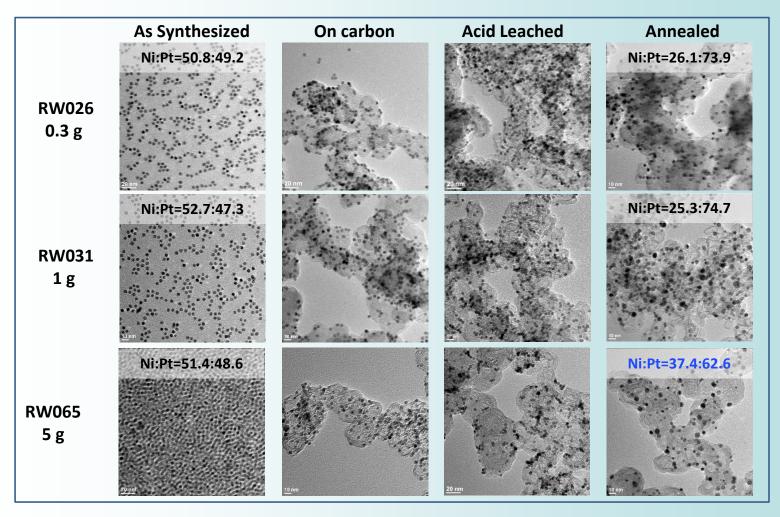
Better result from one-pot procedure Particle sizes keep constant after 10 min reaction


Good for scale up

Task 5Accomplishments and Progress:Reproducibility-one pot

in collaboration with Greg Krumdick, ANL -MERF

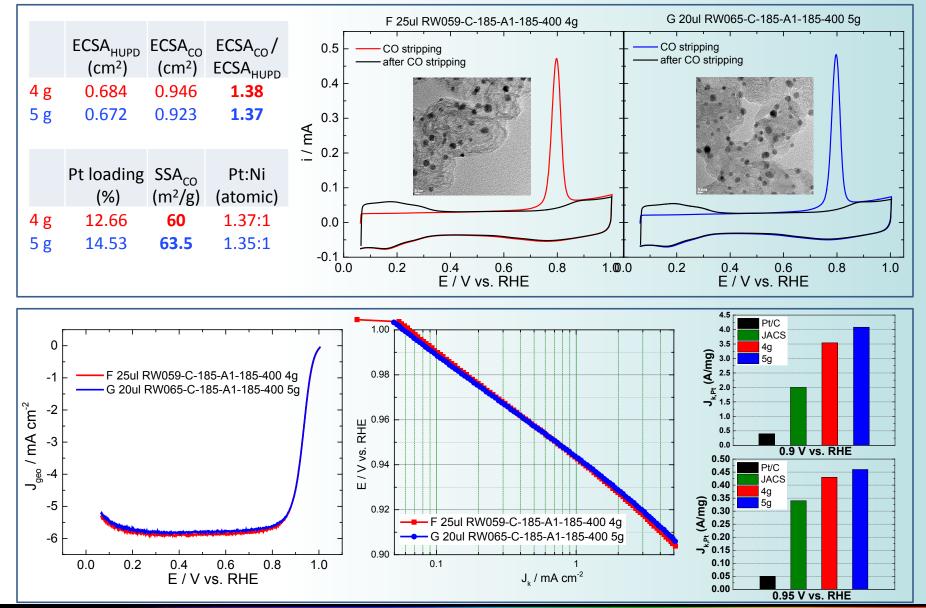
Best reaction condition established by investigating surfactant amount


Desirable mono-dispersed 5 nm PtNi nanoparticles are obtained reproducibly

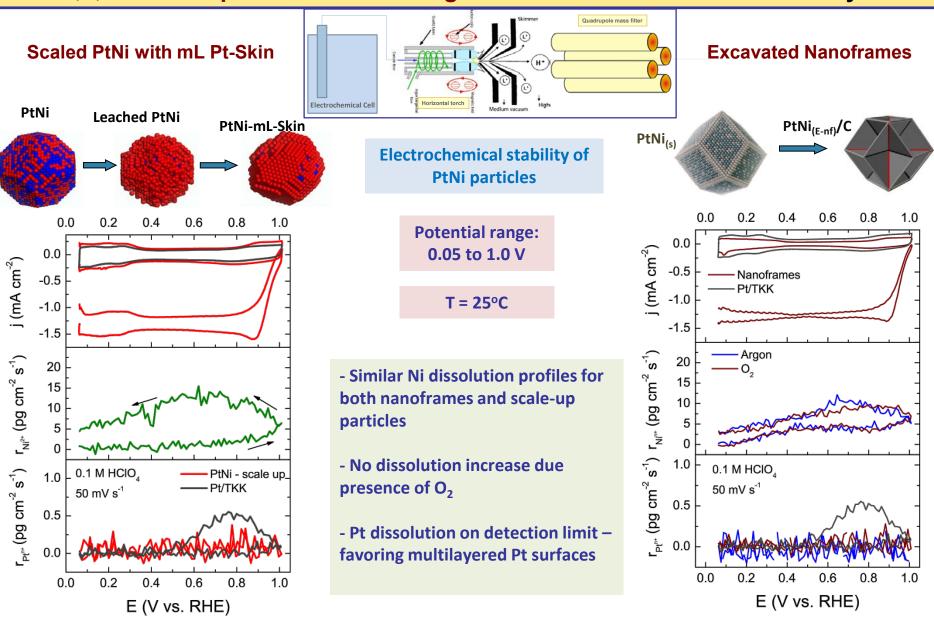
Go

Task 5Accomplishments and Progress:

in collaboration with Greg Krumdick, ANL -MERF

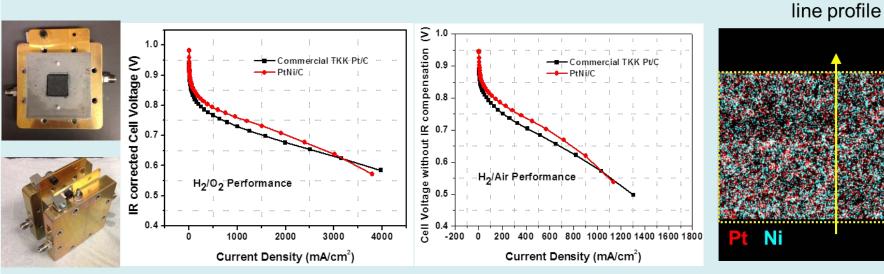


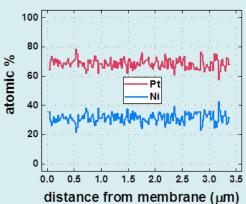
- Uniform distribution of PtNi nanoparticles on carbon was achieved using newly developed loading method.
- More Ni left in PtNi nanoparticles with modified leaching process.


Task 5Accomplishments and Progress:

in collaboration with Greg Krumdick, ANL -MERF

Task 2,3,5 Accomplishments and Progress: In-Situ EC-ICP-MS Pt-Alloy NPs



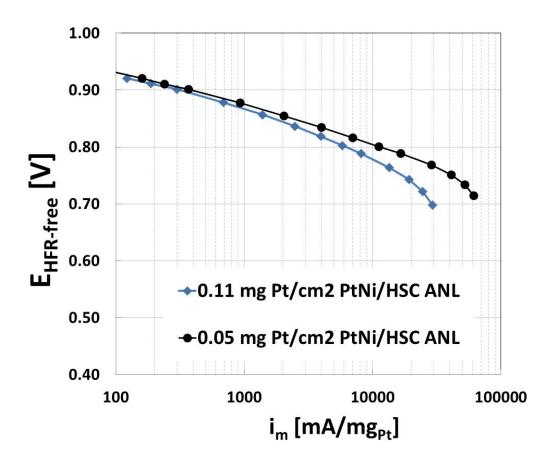

Task 2-3Accomplishments and Progress:

scaled PtNi in 5cm² MEA

in collaboration with Debbie Myers, ANL /CSE and Karren More, ORNL

TKK 20 wt%Pt/C		Units	PtNi	TKK Pt
			Cathode	Cathode
PtNi 12.66 wt%Pt/C Pt total loading	mg _{Pt} /cm² _{geo}	~0.04	~0.04	
Cathode Loading:	Mass activity (H2-O2)	A/mg _{PGM} @0.9 V _{iR-free}	0.5	0.22
0.04 mg-Pt/cm ² I/C = 0.8,	Specific activity (H2-O2)	mA/cm ² _{PGM} @0.9 V	1.01	0.39
H ₂ /O ₂ (or Air), 80°C, 150 kPa(abs) 100%RH (H2-Air)	mA/cm² @0.8 V	131.34	64.3	
	ECSA	m ² /g _{PGM}	50	52.5

Fresh:	Tested:
Pt at.% = 72%	Pt at.% = 80%
Ni at.% = 28%	Ni at.% = 20%



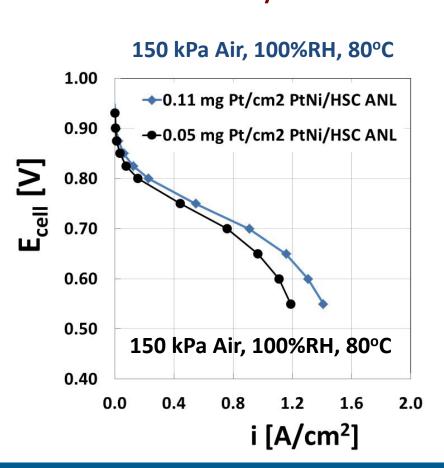
Task 3Accomplishments and Progress:

in collaboration with Shyam Kocha and Kenneth Neyerlin, NREL

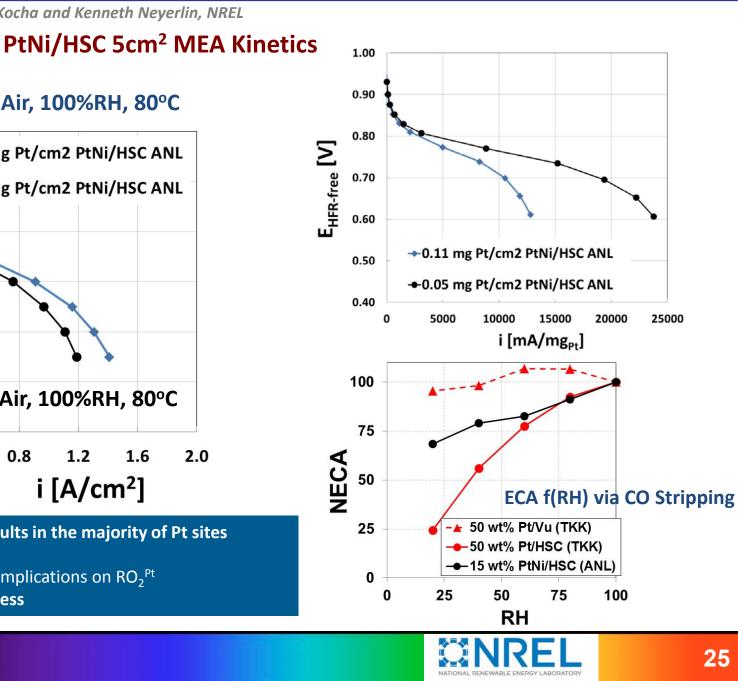
PtNi/HSC 5cm² MEA Kinetics

ORR Mass Activity 150 kPa, (100 kPa _PO₂), 100%RH, 80°C

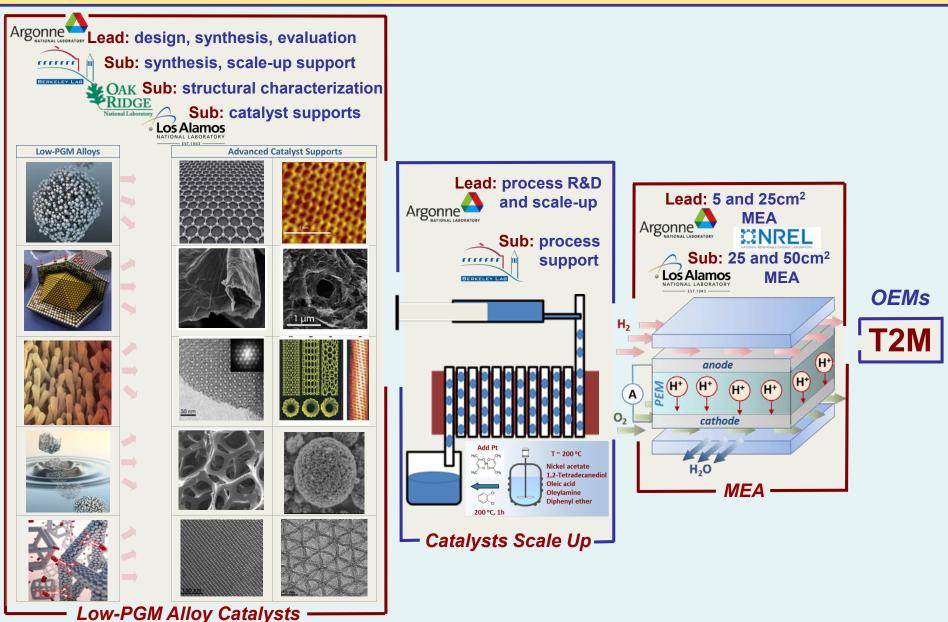
scaled PtNi in 5cm² MEA


Electrochemical Analysis

ng C m²_{Pt})	0.05	0.11
A/mg _{Pt})	390	290
/cm² _{Pt})	640	610
m²/g _{Pt})	60	48
CO (m²/g _{Pt})	53	43
mΩ-cm²)	45	43
		O Stripping
-50 0 200 400 600 800 1000 E vs RHE [mV]		
	$cm^{2}_{Pt})$ A/mg _{Pt}) /cm ² _{Pt}) m ² /g _{Pt}) CO (m ² /g _{Pt}) CO (m ² /g _{Pt}) mΩ-cm ²) 0.11 mg Pt/ 80°C, 100%	$ \begin{array}{c} ng \\ cm^2_{Pt}) \\ A/mg_{Pt}) \\ 390 \\ /cm^2_{Pt}) \\ 640 \\ m^2/g_{Pt}) \\ 60 \\ C0 (m^2/g_{Pt}) \\ 53 \\ m\Omega - cm^2) \\ 45 \\ \hline 0.11 mg Pt/cm^2 \\ 80^{\circ}C, 100\% RH \\ \hline C \\ 80^{\circ}C, 100\% RH \\ \hline C \\ 600 \\ \hline F \\ F \\ F \\ F \\ F \\ F \\ F \\$



Task 3 **Accomplishments and Progress:**


in collaboration with Shyam Kocha and Kenneth Neyerlin, NREL

- Synthesis technique results in the majority of Pt sites available at lower RH
 - -May have positive implications on RO₂^{Pt}
- **Further studies in progress**

Collaborations

- Differences between RDE and MEA, surface chemistry, ionomer catalyst interactions
- Temperature effect on performance activity/durability
- High current density region needs improvements for MEA
- Support catalyst interactions
- Scale-up process for the most advanced structures

1) Durability of fuel cell stack (<40% activity loss)

2) Cost (total loading of PGM 0.125 mg_{PGM} / cm²)

3) Performance (mass activity @ 0.9V 0.44 A/mg_{Pt})

- Alternative approaches towards highly active and stable catalysts with low PGM content
- Tailoring of the structure/composition that can optimize durability/performance in Pt-alloys
- Synthesis of tailored low-PGM practical catalysts with alternative supports
- Structural characterization (in-situ XAS, HRTEM, XRD)
- Resolving the surface chemistry in MEA
- Electrochemical evaluation of performance (RDE, MEA)
- In-situ durability studies for novel catalyst-support structures (RDE-ICP/MS)
- Scale-up of chemical processes to produce gram quantities of the most promising catalysts

Technology Transfer Activities

US007871738B2 (12) United States Patent (10) Patent No.: US 7,871,738 B2 Stamenkovic et al. (45) Date of Patent: Jan. 18, 2011	T2M	
 (34) MANUSEGREGATED SUBJACES AS CATALASTS FOR PUBLICELLS (35) Neard M. Markork, Ellin, L. (25) Inventor: Vijika Stanenkork, Neprolite, L. (25) Neard M. Markork, Ellin, L. (26) Date of Patient Application Publication Stamenkork et al. (39) Pub. Date: Mar. 31, 2011 (4) Mar. 31, 2011 (5) Inventor: Vijika Stamenkork, Neprolite, Hindback, E. (18) (5) Inventor: Vijika Stamenkork, Neprolite, Hindback, E. (18) (5) United States Patient Stamenkork et al. (6) Date of Patient Stamenkork et al. (7) Inventor: Vijika Stamenkork, Neprolite, Hindback, E. (18) (8) Pub. Date: Mar. 31, 2011 (9) Patient Application States CALUSTS FOR FUEL CELLS (9) Inventor: Vijika Stamenkork, Neprolite, Hindback, E. (18) (10) Patient C. (10) Inventor: Vijika Stamenkork, Neprolite, Hindback, E. (18) (11) Inventor: Vijika Stamenkork, Neprolite, Hindback, E. (18) (12) United States Patient Stamenkovic et al. (13) Inventor: Vijika Stamenkork, Neprolite, Hindback, E. (18) (14) United States Patient Stamenkovic et al. (15) Inventor: Vijika Stamenkovic, Neprolite, Hindback, E. (17) (15) Inventor: Vijika Stamenkovic, Neprolite, Hindback, E. (17) (15) Neural M. Markovic, Hindback, Hindback, E. (17) (15) Neural M. Markovic, Hindback, Hindback, E. (17) (16) United States Patient State, Patient, Neprolite, E. (18) (17) Inventor: Vijika Stamenkovic, Neprolite, L. (18) Neural M. Markovic, Hindback, Hindback, E. (17) (18) Neural M. Markovic, Hindback, Hindback, E. (17) (19) Patient No.: US 8, 685, 878 B2 (45) Date of Patient: Apr. 1, 2014 (20) Case J. (20) Neural M. M		Auto OEMs
(2) United States Patent (10) Patent No.: US 9,246,177 B2 Stamenkovic et al. (20) Patent No.: US 9,246,177 B2 Stamenkovic et al. (20) Patent No.: US 9,246,177 B2 (21) Control		FY17
 (4) BIMETALLIC ALLOY ELECTROCATAINSTS (5) References Ched WITH MULTILAZERD PLAUNUSASIN U.S. PATENTI DOCUMENTS (5) Inventes: Vajaber R. Stameslevite, Nagaculle, II. 527327 A. 31999 Diele al. (5) Note al. (6) Note al. (7) Note a		3 NDA signed

• Constant build up of IP portfolio 5 issued patents, 3 pending

S U M M A R Y

Approach

- From fundamentals to real-world materials
- Focus on addressing DOE Technical Targets
- Link between electrocatalysis in the RDE vs. MEA
- Rational design and synthesis of advanced materials with low content of precious metals

Accomplishments

- Established routine operations in a new Scale-Up process Lab and new RDE-ICP/MS
- Dissolution of Pt from 2D thin film surfaces vs. 3D Pt/C catalyst layers
- Addition of both subsurface Au or Pd diminishes Pt dissolution
- Established stability trend for Pt_xNi_{1-x} and particle size dependence for Pt/C
- Novel nanoscale structures with superior electrochemical properties have been synthesized
- In-situ RDE-ICP/MS revealed stability of highly active PtNi catalysts with multilayered Pt-Skin surfaces
- Scaled reproducible synthesis process of 5 grams per batch for PtNi/C with multilayered Pt-Skin surfaces
- Scaled catalyst is monodisperse with advanced catalytic properties in both RDE and MEA
- PtNi with multilayered Pt-Skin exceeded DOE 2020 Technical Target for mass activity and durability in MEA
- One patent application in FY17, 2 articles published and 6 presentations at conferences

Collaborations


- Collaborative effort among the teams from four national laboratories is executed simultaneously in five tasks
- Ongoing exchange with Auto-OEMs and stake holders
- Numerous contacts and collaborative exchanges with academia and other national laboratories

Full time postdocs:	Dr. Dongguo Li (RDE, synthesis, thin films) Dr. Haifeng Lv (RDE, synthesis, MEA) Dr. Rongyue Wang (scale up syntehsis, RDE, MEA)
Partial time postdocs:	Dr. Pietro Papa Lopes (RDE-ICP-MS)
Partial time Staff:	Paul Paulikas (UHV, thin films), Krzysztof Pupek

Grad student: Nigel Becknell (synthesis, RDE, EXAFS)

